首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
6061铝合金表面激光熔覆稀土CeO_2+Ni60组织及耐蚀性   总被引:1,自引:0,他引:1  
为了提高6061铝合金材料的表面性能,利用激光熔覆技术在6061铝合金表面制备了添加有稀土CeO2的Ni60合金熔覆层。分析了激光熔覆稀土CeO2+Ni60熔覆层的显微组织及硬度,研究了其耐腐蚀性能,并与Ni60合金熔覆层和6061铝合金基体进行了对比研究。结果表明,加入2%的稀土氧化物CeO2可有效地减少熔覆层中的裂纹、孔洞和夹杂物,促进晶粒细化,提高熔覆层的组织均匀性、表面硬度及耐腐蚀性能;电化学腐蚀测试表明,在1 mol/L H2SO4中,Ni60熔覆层、铝合金基体的自腐蚀电流密度分别是CeO2+Ni60熔覆层的1.67倍和76.6倍;在3.5%NaCl溶液中,Ni60熔覆层、铝合金基体的自腐蚀电流密度分别是CeO2+Ni60熔覆层的1.6倍和44.5倍;在1 mol/L NaOH溶液中,Ni60熔覆层、铝合金基体的自腐蚀电流密度分别是CeO2+Ni60熔覆层的1.3倍和81倍。  相似文献   

2.
胡新林  钱鸣 《金属热处理》2016,41(4):170-174
采用预置式两步激光熔覆的方法在汽车发动机用AZ91合金表面进行了等离子喷涂+激光熔覆改性处理,通过金相、扫描电镜、XRD、硬度和极化曲线等测试手段,研究了激光熔覆Al-Si层的显微组织和耐腐蚀性能。结果表明,激光熔覆层主要由α-Al和(α-Al+β-Si)共晶组织组成;激光熔覆层的显微硬度要高于等离子喷涂层,且两种涂层的显微硬度都要高于基体合金;改性层和基体合金的耐腐蚀性能从高至低依次为:激光熔覆层>等离子喷涂层>AZ91合金。  相似文献   

3.
碳钢表面激光熔覆铁基B_4C陶瓷涂层的组织与性能   总被引:1,自引:1,他引:0  
利用5 kW横流连续CO2激光器,采用粉末预置法在Q235钢表面进行了激光熔覆铁基B4C陶瓷涂层的试验研究.通过试验,优化了工艺参数,深入分析了熔覆层的显微组织及相组成,测试了熔覆层显微硬度、耐磨损及耐腐蚀性能.结果表明,铁基B4C陶瓷复合涂层与基体达到良好的冶金结合,熔覆层组织主要是由短小柱状枝晶与细小的等轴晶组成,其组成相为α-Fe、Fe3C、Fe3(B,C)、Fe2B、CrB、Cr23C6等化合物,熔覆层中还发现未熔的B4C颗粒.与基体相比,熔覆层显微硬度显著提高,最高可达到1372 HV0.2,约为基体188 HV0.2的7倍;磨损实验表明,熔覆层与基体表面都出现了磨粒磨损特征的犁沟,熔覆层表面磨损的犁沟比基体浅且细密,熔覆层的耐磨性能显著提高.电化学测试结果也表明,熔覆层的耐腐蚀性能也得到了提高.  相似文献   

4.
为提高铝合金的摩擦磨损和耐蚀性能,在A390铝合金基体上通过激光熔覆制备NiCrAl/TiC复合涂层。采用XRD和EDS分析了涂层的物相组成,结合SEM观察了涂层的微观组织,运用摩擦磨损试验机和电化学工作站测试了涂层的摩擦磨损和耐腐蚀性能。结果表明:复合涂层主要物相为AlNi、Al、TiC同时含有少量的Cr、Cu和αAl)。涂层自下至上分别为短棒状树枝晶、胞状晶、柱状树枝晶和等轴晶。相同磨损条件下,A390基体发生了严重的磨粒磨损和剥层磨损,而激光熔覆涂层只产生了轻微的磨粒磨损,熔覆层的相对耐磨性为3.16。在3.5%NaCl溶液中的极化曲线和电化学阻抗谱(EIS)显示:熔覆层自腐蚀电位较A390基体的正移,腐蚀电流密度减小;熔覆层呈单容抗特性,而A390基体在高频区表现为容抗特性,在中低频区则为感抗特性。在Bote图中,低频区熔覆层对应的相位角和中低频段熔覆层的阻抗模值均大于A390基体的,表明熔覆层的耐蚀性远高于A390基体的。熔覆层的腐蚀形貌为局部点蚀,A390基体的腐蚀形貌为晶间腐蚀和剥蚀。  相似文献   

5.
《轻金属》2016,(6)
在5083铝合金表面激光熔覆制备了Al-Ni-Y-Co-La五元非晶复合熔覆层。并对熔覆层组织成分及性能经行了分析。试验结果表明,熔覆层组织较为均匀,气孔、裂纹等缺陷少,主要由α-Al相、Al3Y及Al4Ni Y等金属化合物相以及部分非晶相组成。熔覆层平均硬度较基体的提高约200HV0.1,平均摩擦因数较基体的降低了约0.3,平均磨损量降低为基体的1/5,具有良好的减磨和耐磨性能。电化学试验结果表明,熔覆层能够明显改善基体的耐腐蚀性能。而熔覆层搭接区域粗大的条状组织是抑制其性能进一步提高的主要原因。  相似文献   

6.
以H13钢为基体,通过激光熔覆TiC-H13混合粉末获得熔覆层,考察TiC的加入对TiC-H13熔覆层的微观结构以及耐腐蚀性能的影响。采用SEM、EDS和TEM对熔覆层内的微观组成和物相进行表征,利用电化学阳极极化曲线研究熔覆层的耐腐蚀性能。结果表明:TiC-H13粉末和H13钢基体可以形成良好的熔覆层,熔覆层与基体紧密结合,熔覆层中形成新物相TiC。与H13钢相比,TiC-H13熔覆层的腐蚀电位明显升高,腐蚀电流明显降低,耐腐蚀性能得到显著提高。  相似文献   

7.
采用等离子熔覆技术,在20钢表面分别制备了含5%(B,C)、7%(B,C)和9%(B,C)的Fe基合金(Fe-Cr-Mn-Si-B-C-RE)熔覆层。利用光学显微镜、扫描电镜、X射线衍射仪、显微硬度仪、电化学工作站等设备对三种熔覆层的显微组织结构、硬度和耐腐蚀性能进行了研究,并探究了B、C含量变化对熔覆层组织与性能的影响。结果表明,熔覆层与基体形成良好的冶金结合,主要由α-Fe(Cr)相组成。熔覆层的硬度明显高于基体。随着B、C总含量的升高,熔覆层中出现了(Cr,Fe)_7C_3相,使得熔覆层的硬度和在3.5%Na Cl溶液中的耐腐蚀性能逐渐增强。  相似文献   

8.
姚军  崔反东  李仕臣 《热加工工艺》2014,(18):127-129,133
为改善AZ91D镁合金的表面性能,采用6 kW连续CO2激光器在AZ91D镁合金表面熔覆Ti74Ni20Si4B2涂层。用光学显微镜和带能谱分析的扫描电镜观察熔覆层组织和结合区域的形貌以及元素分布,测试合金层的显微硬度、耐磨性和耐蚀性。结果表明,合金层与基体结合良好,并且元素分布没有明显界限。由XRD分析发现,生成TiBx、B4Si等化合物;通过对熔覆层和基体性能测试,发现平均显微硬度提高至625 HV0.05,耐磨性提高了1倍,极化曲线动态极化腐蚀电位提高了0.194 V,腐蚀电流密度降低了0.093 A·cm-2,在3.5%的NaCl溶液中耐腐蚀性能提高了约96%。  相似文献   

9.
利用激光熔覆工艺在6061合金表面熔覆铜基复合涂层,分析熔覆涂层的微观组织及化学成分,考察熔覆合金成分变化对涂层质量、硬度以及磨损性能的影响.结果表明,熔覆层主要由(Cu,Ni)固溶体、Cu9Al4、AlFe0.23Ni0.77以及CoFe增强相等组成.优化成分条件下,Fe含量为7%,Co含量为9%,熔覆层硬质颗粒体积分数增大,大量硬质颗粒增强体弥散分布在熔覆层Cu-Ni固溶体合金基体组织中,大大增强了基体的抗磨损性能.激光熔覆后的熔覆层表面硬度比6061铝合金提高了4.5倍;磨损体积约为铝合金基线的30%,摩擦因数降至0.3002.  相似文献   

10.
目的提高2205双相不锈钢的耐磨性和耐腐蚀性能。方法采用激光熔覆技术,在2205双相不锈钢基体表面制备钴基合金熔覆层。用X射线衍射仪、光学显微镜检测钴基合金熔覆层的相组成和显微组织,用能谱仪测定熔覆层和基体界面区域的Fe和Cr元素分布,确定熔覆层界面过渡区域的宽度。用显微硬度计和湿砂磨粒磨损试验机,测试熔覆层硬度和耐磨性能。采用扫描电镜观察摩擦表面的磨损特性,分析钴基合金熔覆层的磨损机理。用电化学工作站测试熔覆层的电化学腐蚀特性,并用2205双相不锈钢作为对比试样做相应的性能试验。结果熔覆层由γ-Co固溶体和少量的Cr7C3、Cr2Ni3化合物相组成,界面处的熔覆层相组织是少量的平面晶和胞状晶,其他区域是发达的树枝晶。由于熔覆层由多道搭接和多层熔覆形成,树枝晶生长有方向性,但不是成固定的方向,并出现明显的分层现象。熔覆层过渡区范围为50μm左右,熔覆层平均显微硬度达477HV(0.1),远高于2205双相不锈钢基体(265HV(0.1))。当磨程达到3354m时,熔覆层的质量损失仅为10.3 mg,约为基体质量损失的1/3。在3.5%NaCl溶液中,熔覆层具有较高的极化电阻与电荷转移电阻和较小的自腐蚀电流。结论熔覆层组织致密,无气孔、裂纹等缺陷,与基体呈良好的冶金结合,钴基合金熔覆层具有良好的耐磨粒磨损性能和耐腐蚀性能。  相似文献   

11.
原位合成AlN-Fe3Al增强铁基等离子熔覆层结构及性能   总被引:1,自引:1,他引:0  
目的 采用等离子熔覆技术,制备性能优良的AlN-Fe3Al增强Fe基熔覆层。方法 采用Al粉和Fe基合金粉为熔覆材料,利用等离子熔覆技术,以氮气为保护气体和反应气体,在Q235基体上制备Fe基熔覆层。采用X射线衍射仪、扫描电镜、显微硬度计、磨损试验机和电化学工作站,研究了Al对Fe基熔覆层的相组成、组织形貌、硬度、耐磨性和耐腐蚀性的影响。结果 以Fe基合金粉为熔覆材料时制备的熔覆层主要由α-Fe和Cr组成,Al(质量分数为6%)的加入使熔覆层中出现AlN、Fe3Al及Cr5Al8相。两种情况下制备的熔覆层均成形良好,且与基体呈冶金结合。含Al熔覆层中原位合成的AlN颗粒弥散分布于熔覆层中,尺寸小于5 μm。Al的加入使熔覆层的最高硬度由之前的340HV0.5增加至1350HV0.5,使熔覆层的耐磨性提高4.6倍。并使熔覆层表面形成钝化膜,显著提高了其耐腐蚀性。结论 采用等离子熔覆技术制备出的AlN-Fe3Al增强Fe基熔覆层,其耐磨性和耐腐蚀性得到显著提高。  相似文献   

12.
雷临苹  叶宏  宋坤  卢秀华  郑杰  欧林南  冯凯 《表面技术》2018,47(10):145-150
目的 进一步提高6061铝合金表面的硬度、耐磨性。方法 应用脉冲Nd:YAG激光器在6061铝合金表面制备了NiAl合金涂层和NiAl/Al2O3-TiO2复合涂层。通过SEM、X射线衍射仪系统研究了Al2O3-TiO2陶瓷相添加对NiAl熔覆层组织形貌、成分分布、物相组成的影响。利用HVS-1000硬度测试仪及HSR-2M高速摩擦磨损机,对熔覆层硬度分布及耐磨性进行测试分析。结果 Al2O3-TiO2陶瓷颗粒加入使涂层宏观成形质量明显提高,表面平整光滑、波纹均匀,熔覆层枝晶间距减小,组织结构明显细化。与NiAl熔覆层相比,在NiAl/Al2O3-TiO2复合涂层中,具有较高硬度的Al3Ni、Al3Ni2硬质相含量增大。同时,高硬度Al2O3和良好韧性的TiO2、NiTi金属间化合物在复合涂层内部形成。NiAl/Al2O3-TiO2复合涂层的显微硬度平均可达650HV0.2,相比NiAl涂层提高了300HV0.2;磨损体积仅为铝合金基体的1/9,相比NiAl涂层降低了35%。干摩擦条件下,NiAl/Al2O3-TiO2复合涂层的犁削、剥落现象显著降低。结论 在细晶强化、硬质相弥散强化及良好韧性的NiTi金属间化合物共同作用下,6061铝合金表面硬度和耐磨性得到显著提高。  相似文献   

13.
激光熔覆原位自生TiC颗粒增强Ni基复合涂层的组织与性能   总被引:1,自引:0,他引:1  
采用激光熔覆技术在H13钢表面制备出原位自生TiC颗粒增强Ni基复合涂层,利用扫描电镜、能谱仪和X射线衍射仪对熔覆层组织、成分和物相进行了分析,并测试了熔覆层显微硬度和耐磨性能.结果表明,激光熔覆层与基体呈良好的冶金结合,涂层中无裂纹、气孔等缺陷.涂层组织由γ-Ni、Cr7C3和TiC等相组成,原位自生TiC颗粒多呈菱形,尺寸在1~3μm之间,涂层显微硬度(800~1000 HV0.2)明显高于基体的显微硬度(300 HV0.2).激光熔覆层中存在颗粒强化和细晶强化等多种强化作用,显著提高了H13钢的耐磨性能.  相似文献   

14.
利用激光熔覆技术在铝合金表面制备MoSi2/SiCp复合涂层,对涂层的微观组织形成规律及其主要工艺参数对涂层组织和性能的影响进行了研究.实验结果表明,对试样进行搭接预热和在熔覆粉末中添加助熔剂CaF2是提高熔覆层质量的主要途径.采用多道搭接预热熔覆工艺和预置涂层法可以在铝合金表面获得具有完全冶金结合的原位自生SiC颗粒增韧的硅化钼陶瓷复合涂层,涂层组织主要由Mo(Si,Al)2、SiC、α-Al、Mo5Si3等相组成.熔覆层显微硬度较基体材料的显微硬度有大幅度提高,涂层显微硬度最大可达850HV0.2.  相似文献   

15.
利用激光熔覆技术在铝合金表面制备MoSi2/SiCp复合涂层,对涂层的微观组织形成规律及其主要工艺参数对涂层组织和性能的影响进行了研究。实验结果表明,对试样进行搭接预热和在熔覆粉末中添加助熔剂CaF2是提高熔覆层质量的主要途径。采用多道搭接预热熔覆工艺和预置涂层法可以在铝合金表面获得具有完全冶金结合的原位自生SiC颗粒增韧的硅化钼陶瓷复合涂层,涂层组织主要由Mo(Si,Al)2、SiC、α-Al、Mo5Si3等相组成。熔覆层显微硬度较基体材料的显微硬度有大幅度提高,涂层显微硬度最大可达850HV0.2.  相似文献   

16.
孟君晟  金国  史晓萍  刘冰冰 《表面技术》2020,49(12):184-190
目的 通过氩弧熔覆技术在Ti6Al4V钛合金表面制备陶瓷颗粒增强Ni基复合涂层,以改善其摩擦磨损性能。方法 将Ti粉、BN粉和Ni60A粉进行球磨混合,运用氩弧熔覆技术在Ti6Al4V钛合金表面原位合成多相陶瓷颗粒增强镍基熔覆层。通过X射线衍射分析仪、能谱分析仪、扫描电子显微镜和透射电子显微镜,分析熔覆层中陶瓷颗粒相的组成、形貌、尺寸、分布以及结构特点。用维氏硬度计和环-块式摩擦磨损试验机测试了熔覆层的显微硬度和摩擦磨损性能,并通过扫描电子显微镜对磨痕形貌进行分析。结果 熔覆层物相主要包括TiN、TiNi、TiB、TiB2和α-Ti。原位合成的陶瓷颗粒相弥散分布于熔覆层中,其中增强相TiN、TiB和TiB2的形貌分别以颗粒状、针状和棒状形式存在。熔覆层表面硬度可达1210~1250HV0.5。在相同磨损条件下,TC4合金基体与熔覆层的磨损量分别为34.23 mg和4.86 mg,熔覆层的磨损量明显降低。熔覆层的磨损表面无粘着痕迹,磨损机制为磨粒磨损。结论 与Ti6Al4V钛合金基体对比,熔覆层显微硬度值提高约4倍,多相陶瓷颗粒熔覆层可有效提高钛合金表面的耐磨性。  相似文献   

17.
目的 研究WC添加量对WC/Co06复合涂层耐磨耐腐蚀性能影响,以期应用到液压阻尼器活塞杆表面,增强活塞杆耐磨耐腐蚀性能。方法 采用同轴送粉式激光熔覆设备在液压阻尼器活塞杆用42Cr Mo钢表面制备不同WC含量(质量分数为5%、10%、15%、20%)的WC/Co06涂层,用金相显微镜、扫描电镜、X射线衍射仪及维氏硬度显微计,对4组不同WC含量的涂层进行质量检测。用滑动摩擦磨损试验机对涂层进行磨损性能测试。用盐雾腐蚀试验箱对涂层进行耐腐蚀测试。结果 熔覆层表面质量良好,稀释率为5%左右。熔覆层显微组织随WC含量的升高越来越致密,WC/Co06涂层生成多种硬质相,如Cr23C6、Cr7C3、WC及Fe3W3C等分布在γ-Co固溶体周围增强其硬度以及耐磨耐腐蚀能力。4组熔覆层中,20%WC含量的熔覆层硬度最高(810HV),是基体的(275HV)2.95倍。摩擦磨损及盐雾腐蚀试验后,熔覆涂层磨损量及腐蚀失重均明显降低,其中20%WC熔覆层的磨损量及腐蚀失重最低...  相似文献   

18.
为了改善铝合金表面的磨损性能,在A390铝合金表面激光熔覆制备Ni Cr Al/Ti C复合涂层。借助XRD和EDS分析了涂层的物相组成;通过SEM分析了涂层的微观组织;结合Al-Ni二元平衡相图和热力学知识对熔覆层Al-Ni金属间化合物形成机制进行了分析。结果表明:涂层物相包括Al Ni、Al3Ni2、Ti C、Cr13Ni5Si2、Cu9Al4和少量α-Al相;涂层自下至上分别为胞状晶、柱状树枝晶和等轴晶;熔覆层中Ti C颗粒强化机制包括细晶强化、硬质相颗粒弥散强化和位错堆积强化;熔覆层平均显微硬度为676 HV0.2,是A390铝合金的4倍。  相似文献   

19.
采用LWS-1000型Nd∶YAG激光器在1050铝合金表面激光熔覆制备高硅铝熔覆层。探索不同激光功率和扫描速度对熔覆层质量的影响,分析熔覆层的微观组织,测试熔覆层的硬度和耐磨性能。结果表明:在优化工艺参数下(激光功率170W,激光扫描速度200mm/min)制备出的高硅铝熔覆层与基体结合良好、组织致密、无气孔和裂纹,熔覆层中存在大量初晶硅,未发现明显共晶组织。熔覆层的横截面硬度值达到245HV,进行耐磨性测试后,相比基体耐磨性能明显提高。  相似文献   

20.
采用CO2激光器及LASERCELL-1005六轴六联动三维激光加工机床,利用粉末预置法在40Cr基体上进行激光熔覆处理。用扫描电镜、X射线衍射仪、EG&G M273电化学测试系统及显微硬度计等对熔覆层进行微观组织观察和性能测试。结果表明:熔覆层主要由FeNi3、Ni3B、C23C6等相组成。激光熔覆后耐蚀性能有大幅度改善;硬度明显提高,其最大值为约基体硬度的4倍。扫描速度增大,显微组织变得细小均匀、晶间排列紧密;熔覆试样的耐腐蚀性能增强,硬度变大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号