首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
当温度为300~450℃,应变速率为0.001~0.1 s-1时,在WDW-E200拉伸机上采用单向拉伸实验研究喷射沉积7075Al/SiCp复合材料板材的高温变形行为;分析板材的变形激活能以及流变应力、变形温度和应变速率之间的关系.结果表明:随着变形温度升高和应变速率降低,7075Al/SiCp复合材料板材拉伸流变应力减小;其最大拉伸断裂伸长率由5.03%增加到71.07%;7075Al/SiCp复合材料板材应变速率敏感系数的最大值仅为0.22,在温度为623、673和723 K时其变形激活能分别为380.49、323.42和434.56 kJ/mol,均高于铝的晶格自扩散激活能(142 kJ/mol).  相似文献   

2.
采用Gleebe-3500型热模拟试验机对7075铝合金进行等温恒应变速率热压缩实验,研究了该合金在变形温度为250~450℃、应变速率为0.001~1 s~(-1)条件下的热变形行为,并据此建立了热加工图。结果表明:流变真应力随应变速率的升高而增大,随变形温度的升高而减小;经250℃、16 h欠时效处理的样品,其峰值应力要显著大于未经时效的样品;真应变为0.3和0.7的热加工图在250~350℃的温度区间、0.01~1 s~(-1)的应变速率区间均出现流变失稳;16 h欠时效态7075铝合金的最佳热变形参数为:变形温度400~450℃、应变速率0.01~0.001 s~(-1)。  相似文献   

3.
采用Gleeble-1500D热模拟试验机在300~450°C、0.001~1.0 s-1条件下对不同铝片层厚度的Al2O3/Al复合材料进行变形行为研究。实验结果表明,在设定的温度下,流变应力随着应变速率的增加而增加,而在设定的应变速率下,流变应力随着温度的升高而降低。在所采用的实验条件下,片层Al2O3/Al复合材料的高温流变行为可以用双曲正弦函数来描述。Al2O3/Al-2μm和Al2O3/Al-1μm复合材料在进行真应变为0.6的热变形时最优加工工艺参数分别为300~330°C,0.007~0.03 s-1和335~360°C,0.015~0.06 s-1。而热加工图也明确了此两种复合材料的流变失稳区。  相似文献   

4.
采用圆柱试样在Gleeble-1500热模拟实验机上对原位反应喷射沉积TiC/7075A1复合材料进行高温压缩变形实验,研究其高温热变形行为.变形温度为300、350、400、450℃,应变速率为0.001、0.01、0.1s-1.结果显示,TiC/7075A1复合材料的流变应力随变形温度升高而降低、随应变速率的降低而降低.可用Zener-Hollomon参数的双曲正弦形式描述复合材料高温压缩变形流变应力,其变形激活能为186.786 KJ/mol.  相似文献   

5.
Al-Zn-Mg-Cu合金热压缩流变应力行为及组织演变   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热力模拟试验机进行了Al-Zn-Mg-Cu合金的等温压缩实验,变形温度为250~450℃,应变速率为0.001~0.1 s-1,变形量为10%~50%,获得了热压缩变形的真应力-真应变曲线.应力-应变曲线基本呈现回复型曲线特征,计算得出其应力指数为4.60,热变形激活能为186.70 kJ·mol-1;综合分析了变形温度、应变速率和变形量对组织演变的影响规律,确定了Al-Zn-Mg-Cu合金的锻造工艺参数为:锻造温度区间420350℃,应变速率0.01~0.1 s-1,变形量>30%.  相似文献   

6.
采用Gleeble3180D型热模拟试验机对热挤压态FGH96合金在变形温度1020~1140℃,应变速率0.001~1.0s-1进行热压缩实验,分析真应力-真应变曲线,绘制热加工图。并针对热挤压态粉末冶金高温合金FGH96在热压缩温度低于1080℃时的开裂现象,利用热模拟压缩实验方法,确定在变形温度为1050℃、应变速率为0.001~1.0s-1的热压缩变形过程中的开裂临界应变量,观察变形后试样的裂纹形貌和显微组织,并利用有限元分析方法对热压缩变形过程进行模拟。结果表明:试样中部位置受拉应力作用沿着变形方向产生鼓形变形,当达到临界应变量后,产生呈沿晶断裂的宏观裂纹,并且随着应变速率的减小,裂纹产生的临界应变量逐渐减小;在低应变速率条件下,在宏观裂纹产生之前,试样内部晶粒之间出现了微观开裂的现象,并造成应力下降。  相似文献   

7.
采用Gleeble-1500热模拟试验机进行等温压缩实验,在变形温度为1000-1150°C、应变速率为0.001-1s-1的条件下,研究粉末冶金Ti-47Al-2Cr-0.2Mo合金的流变行为。结果表明:变形温度和应变速率对该合金的流变行为有显著影响,流变应力随应变速率的增加和变形温度的降低而增大。不同应变条件下的加工图表明该合金的加工图对应变量很敏感。应变量为0.5时,对应的加工图表明粉末冶金Ti-47Al-2Cr-0.2Mo合金合适的加工区域是:温度1000-1050°C、应变速率0.001-0.05s-1;温度1050-1125°C、应变速率0.01-0.1s-1。对热变形后合金的显微组织和加工图进行分析,发现1000°C,0.001s-1是该合金进行热变形的最佳工艺参数。  相似文献   

8.
研究了ZK31-1.5Y镁合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的热压缩变形特性,基于动态材料模型建立了热加工图,并结合真应力-真应变曲线确定了该合金在实验条件下的热变形机制及最佳工艺参数。结果表明:ZK31-1.5Y合金的真应力-真应变曲线主要以动态再结晶和动态回复软化机制为特征,峰值应力和稳态应力随变形温度的降低或应变速率的升高显著增加。合金功率耗散图和失稳图中分别包含了3个效率峰值区和1个马鞍形流变失稳区,峰区效率范围为38%~65%,叠加后形成的加工图给出了实验参数范围内热变形时的最优工艺参数,其热变形温度为350~450℃、应变速率为0.1~1 s-1。当应变量由0.1~0.6逐渐增大时对加工图分布规律影响不大。  相似文献   

9.
挤压态7075铝合金高温流变行为及神经网络本构模型   总被引:1,自引:0,他引:1  
采用Gleeble1500D热模拟实验机研究挤压态7075铝合金在变形温度为250~450℃、应变速率为0.01~10s-1下单道次压缩过程的高温流变行为。结果表明:材料在350℃及以下变形时,流变应力曲线呈动态回复型;在温度为350℃以上、应变速率为0.1s-1时,流变曲线局部陡降明显;当应变速率为10s-1时,流变曲线发生波动,呈动态再结晶型;挤压态7075铝合金的流变应力曲线峰值应力及稳态应力均高于铸态合金的,且在变形温度较高时,挤压态材料更易于发生动态软化。基于BP神经网络建立挤压态7075铝合金的本构关系模型,预测值与实验值对比表明:所建立的本构模型整体误差在5.35%以内,拟合度为2.48%,该模型可以用于描述7075铝合金的高温变形流变行为,为该合金热变形过程分析和有限元模拟提供基础。  相似文献   

10.
对原位反应TiC_p/7075铝合金与7075铝基体合金进行试验观察,绘制真应力-真应变曲线。研究原位TiC颗粒对7075铝合金塑性变形机理的影响。结果表明:流变应力随变形温度的降低而增大,随变形速率的升高而增大。在7075铝基复合材料的塑性变形过程中,在较低的变形温度和较高应变速率下,原位TiC颗粒对基体的强化作用明显;当变形温度为450℃,变形速率为0.001s^(-1)时,原位TiC颗粒已失去其强化作用。  相似文献   

11.
利用应力应变曲线、热加工图,结合电子透射电子显微镜和背散射衍射技术研究在变形温度为350~510°C、应变速率为0.001~10 s-1时高钛6061铝合金的热变形行为。结果表明,该合金的热压缩变形流变峰值应力随变形温度的升高和应变速率的降低而降低;在实验参数范围内平均热变形激活能为185 k J/mol;建立了流变应力模型;该合金热变形时主要的软化机制为动态回复;根据材料动态模型获得了高钛6061铝合金的热加工图,最佳的热加工窗口温度为400~440°C,应变速率为0.001~0.1 s~(-1)。  相似文献   

12.
采用热压缩实验研究2050 Al-Li合金在变形温度为340~500°C、应变速率为0.001~10 s~(-1)范围内的热变形行为。分析摩擦及温度变化对流变应力的影响,并对流变曲线进行修正处理;基于动态材料模型及修正后的真应力数据,获得真应变为0.5条件下合金的加工图;利用金相显微镜对压缩试样显微组织变化进行观察。结果表明,在热变形过程中材料的摩擦及温度变化对流变应力有显著影响;合金合适加工区域位于变形温度为370~430°C、应变速率为0.01~0.001 s~(-1)区域,以及变形温度为440~500°C、应变速率为0.3~0.01 s~(-1)区域内;失稳区位于高应变速率下(3~10 s~(-1))所有温度范围内;动态回复和动态再结晶是2050 Al-Li合金在稳定加工区域内主要变形机理,而在失稳区合金变形机理主要表现为流变集中。  相似文献   

13.
采用真空热压内氧化法制备纳米和微米Al2O3颗粒混杂增强弥散铜-Al2O3复合材料,对比研究了弥散铜和混杂增强弥散铜-0.9%Al2O3复合材料的密度、硬度、导电率和微观组织,采用Gleeble-1500D热模拟机的等温压缩实验探讨了两种弥散铜复合材料的热变形行为。结果表明,弥散铜-0.9%Al2O3复合材料基体内同时存在内氧化产生的纳米级Al2O3颗粒及机械添加的微米级Al2O3颗粒,烧结态致密度均大于97.7%,硬度158~176 HV,导电率60%IACS以上。两种复合材料变形温度600~950℃,应变速率0.001~1 s-1条件下的真应力-应变曲线具有典型的动态再结晶特征,真应力随应变量增加均先增大后减小,之后达到一个稳定状态。热变形过程中热激活能随少量Al2O3添加而明显增加,建立了其稳态真应力-真应变双曲正弦本构方程。  相似文献   

14.
采用Gleeble-1500D热模拟实验机,对AZ80镁合金在250℃~450℃之间,应变速率为0.001s-1、0.01s-1、0.1s-1、1s-1、5s-1进行热模拟压缩变形,对试样宏观形貌与变形温度和应变速率进行了分析,分析了流变应力与应变速度和温度的关系,结果表明:AZ80镁合金的压缩热变形属于动态再结晶型,镁合金的变形抗力随着变形温度的上升而减小,塑性随着变形温度的增加而有所提高。随变形温度的升高和应变速率的减小,流变应力峰值向应变减小的方向移动,同一变形速率下,变形温度越高所对应的应力值越低。  相似文献   

15.
通过高温拉伸试验,研究了AZ31B镁合金板材在250~450℃以及应变速率0.001 s-1、0.01 s-1条件下的高温变形行为,获得了材料的厚向异性系数、伸长率等成形性能参数及有关组织特征.结果表明,不同变形条件下AZ31B合金的真应力-真应变曲线均出现峰值,峰值应力随变形温度的升高和应变速率的降低而减小;硬化速率随变形温度的升高而降低,在温度高于250℃时变化不大.当变形温度为250 ℃,应变速率为0.001 s-1时,合金的厚向异性系数达到最大.随变形温度的升高,AZ31B镁合金的塑性显著提高.合金的动态再结晶温度为250℃,随着应变速率增大,合金发生动态再结晶的速度加快.  相似文献   

16.
利用热压缩实验研究一种新型的具有优异室温塑性的Mg-4Al-2Sn-Y-Nd镁合金的高温流变行为,变形温度为200~400°C,应变速率为1.5×10-3~7.5 s-1。结果表明:合金的应变速率敏感因子(m)在不同变形温度下均明显小于AZ31镁合金的m值,因此该合金适合在高应变速率下进行热加工。在真应力-应变曲线基础上,建立Mg-4Al-2Sn-Y-Nd镁合金高温变形的本构方程,并计算得到合金的应力指数为10.33,表明合金在高温下主要的变形机制为位错攀移机制。同时,利用加工图技术确定合金的最佳高温变形加工窗口,即变形温度在350~400°C之间,应变速率在0.01~0.03 s-1。  相似文献   

17.
在THERMECMASTER-Z型热模拟试验机上,对锻态TB6钛合金在真应变为0.92、变形温度为800℃~1150℃、应变速率为0.001s-1~1s-1的条件下进行等温恒应变速率压缩试验,分析合金在β单相区条件下的热变形特点,并观察金相组织。结果表明,应变速率对合金流动应力的影响较显著;而变形温度对合金流动应力的影响在较高应变速率时较大,在较低应变速率时较小。动态再结晶晶粒尺寸和动态再结晶体积分数,随温度的升高而增大,随应变速率的增大而减小。从晶粒细化和动态再结晶组织均匀性考虑,当真应变为0.92时,变形温度选择在950℃~1050℃之间,应变速率选择在0.01s-1为宜。  相似文献   

18.
采用Gleeble-3800热模拟压缩试验机对热等静压态FGH96合金进行了不同温度和应变速率的等温热压缩试验,研究了FGH96合金在变形温度分别为1040、1070、1100、1130 ℃,应变速率为0.001、0.01、0.1和1 s-1,最大真应变为0.7条件下的高温热变形行为,分析了真应力-真应变曲线,建立了本构方程,并利用Origin软件构建了热加工图,结合变形温度和应变速率对组织的影响确定了FGH96合金合适的热加工参数。结果表明,热等静压态FGH96合金的真应力-真应变曲线呈现典型的动态再结晶特征,其峰值应力随变形温度的降低和应变速率的增加而增加,结合本构方程、热加工图以及微观组织确定了FGH96合金合适的热加工区域为变形温度1060~1080 ℃,应变速率0.0001~0.004 s-1。  相似文献   

19.
研究了铸态Mg-8Y-6Gd-1Nd-0.17Zn镁合金在应变量为50%、温度350℃~450℃、应变速率0.0001s-1~0.1s-1的范围内热压缩过程中的本构行为、组织演变和热加工性能。通过选用双曲正弦本构方程来描述合金的流变行为以及变形参数间的关系。实验结果表明,温度和应变速率对Mg-8Y-6Gd-1Nd-0.17Zn镁合金的流变应力行为有重要影响,其流变应力随温度的降低和应变速率的增加而增大,并且在温度高于400℃压缩时,合金的真应力应变曲线具有典型的动态再结晶特性。在本实验条件下,该合金变形期间的活化能(Q)和应力指数(n)分别为359.258 KJ / mol 和5.24,实验值与计算值之间的平均误差(ARE)为3.37%。最后基于动态材料模型加工理论,结合热加工图和压缩过程中的组织演变,确定了该合金的最佳热加工参数为:加热温度400~450℃,应变速率为0.0001s-1~0.001s-1。  相似文献   

20.
对Cu-Cr-Zr-Ag合金在Gleeble-1500D热模拟试验机上进行热压缩实验,对合金在应变速率为0.001~10 s-1、变形温度为650~950℃的高温变形过程中的流变应力行为、热变形过程中的组织演变和动态再结晶机制进行了研究。结果表明,流变应力随变形温度升高而减小,随应变速率提高而增大。Cu-Cr-Zr-Ag合金在热变形过程中的动态再结晶机制受变形温度和应变速率控制。当温度达到950℃,应变速率为0.001 s-1时,Cu-Cr-Zr-Ag合金发生完全的动态再结晶。该合金高温热压缩变形时的热变形激活能Q为343.23 k J/mol,同时利用逐步回归法建立了该合金的流变应力方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号