首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
Ti-46Al-2Cr-4Nb-Y合金的高温变形及加工图   总被引:1,自引:0,他引:1  
采用Gleeble-1500 热压缩模拟试验机进行压缩实验,在变形温度为1 100~1 250 ℃、应变速率为10-2~ 1 s-1的范围内,研究Ti-46Al-2Cr-4Nb-Y合金的高温变形行为,并基于动态材料模型,建立Ti-46Al-2Cr-4Nb-Y合金的加工图.结果表明:Ti-46Al-2Cr-4Nb-Y合金的高温变形流变应力对温度及应变速率敏感;流变应力随应变速率的增大而增大,随温度的升高而减小;动态再结晶是导致流变软化及稳态流变的主要原因;Ti-46Al-2Cr-4Nb-Y合金的安全热加工区域为温度1 200~1 230 ℃,应变速率10-2~10-1 s-1.  相似文献   

2.
采用Gleeble-3800热模拟机研究粉末冶金Ti-47Al-2Cr-2Nb-0.2W-0.15B(摩尔分数,%)合金在变形温度为1 100~1 250 ℃、应变速率为10-3~100 s-1和变形率为50%条件下的高温变形行为.结果表明:Ti-47Al-2Cr-2Nb- 0.2W-0.15B合金在高温变形初始阶段,流动应力随应变的增加迅速增加;当应变超过一定值后,流变应力开始下降并逐渐趋于稳定,出现稳态流动特征;随着形变温度的升高和应变速率的增加,合金高温变形时的峰值应力和稳态应力显著降低.利用热模拟压缩实验数据,基于Arrhenius 方程和Zener-Hollomon参数,运用多元回归分析方法建立Ti-47Al-2Cr-2Nb-0.2W-0.15B合金在高温变形过程中的流变应力本构模型.应用DEFORMTM 3D软件验证该流变应力本构模型的有效性,结果表明所得高温流变应力本构模型能够较好地预测Ti-47Al-2Cr-2Nb-0.2W- 0.15B合金的高温变形行为.  相似文献   

3.
通过热压缩实验研究Ti-6Al-2Zr-1Mo-1V钛合金在变形温度为1000~1100°C,应变速率为10-3~1.0s-1的条件下的动态再结晶行为。结果表明:在变形温度高于1050°C、应变速率低于0.01s-1时,合金的动态再结晶机制以不连续动态再结晶为主;在变形温度低于1050°C、应变速率高于0.01s-1时,合金的动态再结晶机制以连续动态再结晶为主,同时存在少量的不连续动态再结晶。此外,降低应变速率和升高变形温度均能促进动态再结晶进程并使β变形晶粒细化。  相似文献   

4.
在Gleeble-1500热模拟机上对Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金进行了热压缩实验,采用动态材料模型的加工图研究了其在1000~1200℃和0.001~1.0 s-1条件下的热变形行为.结果表明,Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金在热变形时呈现两个微观机制不同的动态再结晶峰区,其中动态再结晶区域Ⅰ区:峰值效率为34%,峰值对应的温度和应变速率分别为1100℃和0.01 s-1;动态再结晶区域Ⅱ区:峰值效率为34%,峰值对应的温度和应变速率分别为1105℃和0.001 s-1.在温度低于1140℃、应变速率大于0.01 s-1范围内进行热加工时,由于热塑性变形过程中再结晶晶粒的不均匀长大,极易导致试样变形开裂.在温度1000~1130℃,变形速率大于0.02 s-1区域内,热压缩变形试样外表面剪切开裂趋势明显,易引起加工失稳.根据热加工图分析结果可知,TiAl合金热变形时应选择在动态再结晶Ⅰ区内进行.  相似文献   

5.
利用热压缩实验研究一种新型的具有优异室温塑性的Mg-4Al-2Sn-Y-Nd镁合金的高温流变行为,变形温度为200~400°C,应变速率为1.5×10-3~7.5 s-1。结果表明:合金的应变速率敏感因子(m)在不同变形温度下均明显小于AZ31镁合金的m值,因此该合金适合在高应变速率下进行热加工。在真应力-应变曲线基础上,建立Mg-4Al-2Sn-Y-Nd镁合金高温变形的本构方程,并计算得到合金的应力指数为10.33,表明合金在高温下主要的变形机制为位错攀移机制。同时,利用加工图技术确定合金的最佳高温变形加工窗口,即变形温度在350~400°C之间,应变速率在0.01~0.03 s-1。  相似文献   

6.
采用Gleeble-1500热模拟试验机对Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金进行了温度1000~1200℃、应变速率0.001~1.0 s-1的等温热压缩实验,根据摩擦修正后的流变应力曲线,研究了工艺参数变化对流变应力的影响,建立了TiAl合金高温变形的本构模型.结果表明:流变应力随变形温度升高而降低,随应变速率提高而增大,并且通过线性回归分析获得了1000~1200℃时的变形激活能为466 kJ·mol-1和高温锻造本构方程.  相似文献   

7.
为了挖掘亚稳b钛合金Ti-B19的热变形加工潜力,采用热模拟试验机,在温度范围750-1000 °C,温度间隔50 °C,应变速率为0.001-10 s-1的条件下对Ti-B19合金的热压缩行为进行研究。结果表明,一定温度下,Ti-B19合金的流变应力随应变速率的增大而增大;一定应变速率下,合金的流变应力则随温度的升高而降低。当应变ε为0.6时,合金的加工图可分为3个区域。700-800 °C,应变速率为0.001-0.1 s-1,合金最大的能量耗散效率值出现在750 °C和0.01 s-1处,其数值为42%,出现连续软化之前,此区域的流变曲线中只出现单个峰或振荡峰。第2个区域的温度范围在800-1000 °C,应变速率范围为0.001-0.1 s-1,能量耗散效率值在29%~36%之间变化。此区域的流变曲线到达稳态之前只出现单个峰或振荡峰,此时可观察到典型的再结晶组织。温度低于800 °C,应变速率大于0.1 s-1,或者温度高于800 °C,应变速率大于10 s-1时, 合金中会出现典型的流变不稳定的第3区,组织中可观察到绝热剪切带或β相流变不均匀区。  相似文献   

8.
采用Gleeble-3500热模拟试验机在温度300~550°C、变形速率0.001~10 s-1条件下,对片状粉末冶金烧结态CNT/Al-4Cu复合材料进行热变形行为研究。基于动态材料模型(DMM)建立应变为0.1~0.6的加工图,并利用扫描电镜、电子背散射衍射技术和高分辨透射电镜分析变形前后的显微组织。结果表明:应变对加工图有明显的影响,当应变为0.6时,最优加工区域为:375~425°C,0.4~10 s-1和525~550°C,0.02~10 s-1。在低变形温度和低变形速率时,基体中大颗粒不均匀分布,出现高密度缠结位错、位错墙和亚晶,对应加工图中的不稳定区域。当变形温度为400°C和550°C、变形速率为10s-1时,基体中细小颗粒均匀分布,晶粒为再结晶形态,对应加工图中的稳定区域。  相似文献   

9.
采用热压缩实验研究Mg-8Zn-1Al-0.5Cu-0.5Mn镁合金在温度为200~350°C、应变速率为0.001~1 s-1条件下的热变形行为。结果表明,流变应力随着应变速率的增加而明显增大,随着变形温度的升高而减小。同时,采用回归分析的方法建立预测合金流变应力的模型,该模型与实验结果能较好地吻合。以动态材料模型为基础建立合金的热加工图,从加工图中可以看出,随着应变的增大,合金的非稳态区域变大,合金在高温和低应变速率下具有良好的加工性。  相似文献   

10.
通过等温压缩试验和金相显微镜分析研究具有等轴(α+β)晶粒初始组织的Ti-5Al-5Mo-V-1Cr-1Fe合金的高温压缩性能。基于温度校准的真应力-应变数据,建立了高精度本构模型和加工图。研究结果表明,压缩试样局域应变不均匀性随着温度的升高而减少,使得α相分布均匀。对于温度范围在800~840°C、应变速率为10 s~(-1)的形变条件下,α相的体积分数随温度升高而增加,而α相的平均晶粒尺寸随温度升高而缓慢减小,表明动态回复和动态再结晶同时发生。在温度范围为860~900°C、应变速率为10 s~(-1)的变形条件下,试样中观察到流变局部化和微弱的β相晶界。加工图分析表明,Ti-5Al-5Mo-5V-1Cr-1Fe合金的热加工适于在应变速率低于0.01 s~(-1)下进行,以便提高其加工性。  相似文献   

11.
在Gleeble-1500热模拟仪上进行热压缩实验,研究在变形温度250-450°C、应变速率0.0005-0.5 s^-1时淬火状态下的7005铝合金的热变形行为。实验结果表明:淬火状态7005合金的流变应力受变形温度和应变速率的双重影响,热变形过程中的流变应力可用Zener-Hollomon参数的指数型方程表示。通过比较本构方程计算出的流变应力和实验测量的流变应力发现预测结果和实验结果有很好的相符性。基于动态材料模型,在真应变为0.1、0.3和0.5处构建了淬火状态下的7005铝合金的热加工图。通过加工图分析及微观组织观察发现合金的最优热加工区域为:270-340°C,0.05-0.5 s^-1,在该区域内变形时合金发生了合理的动态再结晶行为。合金的流变不稳定性与绝热剪切带以及局部流变的产生有关。因此,为获取满意的性能,在热加工时应避开这些不稳定的区域。  相似文献   

12.
采用能量消耗加工图研究 2E12 铝合金热压缩过程中的变形行为及其微观组织演变,且建立能量消耗效率与微观组织演变的关系。压缩变形温度范围为 250~500 °C,应变速率范围为 0.01~10 s-1,总真应变量为 0.5。结果表明,加工图中存在 2 个动态回复区域:(1) 325~400 °C,0.01~0.03 s-1,(2) 350~450 °C,1.78~10 s-1。当温度高于 450 °C时,2E12 合金发生部分动态再结晶现象,且动态再结晶体积分数随变形温度的升高而增大,但是当温度为 500 °C,应变速率为 1~10 s-1时,2E12 合金发生了第二相粒子回溶和沿晶开裂的现象。  相似文献   

13.
新型镍基粉末高温合金的热变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机对新型镍基粉末高温合金FGH98Ⅰ进行了单向热压缩变形试验,研究了其在变形温度为950~1150℃,应变速率为0.0003~1s-1条件下的热变形行为,建立和对比了不同应变量下的应变速率敏感因子m图和功率耗散效率因子η图,并对热加工图进行了组织验证。结果表明:合金的流变应力随着变形温度的升高和应变速率的降低而降低;不同应变量下的η图与m图相似,随着应变量的增大,峰区的η与m值逐渐升高;当真应变为0.5时,在变形温度为1050℃,应变速率为0.0003s-1条件下,η与m达到峰值,分别为40%和25%,合金发生了动态再结晶,晶粒细化且无内裂纹。该结果为FGH98Ⅰ合金实际热加工工艺的优化提供了理论依据。  相似文献   

14.
在Gleeble-1500热模拟试验机上进行高温压缩试验,研究了变形温度为1000~1100℃,初始应变速率为0.01~1 s-1的铸态Ti-6Al-4V-0.1B合金的变形行为。基于动态材料模型建立了加工图,并观察了变形组织。结果表明:该合金为热敏感和应力敏感型合金,热变形的最佳变形参数为1050~1100℃,应变速率在0.1~1 s-1之间。铸态大变形区组织为沿着变形方向拉长的原始β晶粒,晶粒组织内部出现针状马氏体,TiB相在变形的过程中出现折断,并沿着加工流线分布。  相似文献   

15.
利用Gleeble-1500D热模拟试验机对低成本钛合金Ti-3.0Al-3.7Cr-2.0Fe-0.1B的热压缩行为进行研究。采用的应变速率分别为0.01、0.1、1.0和10s1,选用的温度分别为800、850、900和950°C,试样的变形量最大为70%。结果表明:峰值流变应力随着温度的增加和应变速率的降低而降低;根据Arrhenius公式获得该合金在本实验条件下的本构方程为ε=6.1×1012[sinh(0.0113044σ)]3.35×exp(-261719.8/RT),并得到了该合金的加工图。当应变速率大于等于1.0s1时,合金内发生动态再结晶现象,且应变速率越大动态再结晶现象越明显。  相似文献   

16.
研究了ZK31-1.5Y镁合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的热压缩变形特性,基于动态材料模型建立了热加工图,并结合真应力-真应变曲线确定了该合金在实验条件下的热变形机制及最佳工艺参数。结果表明:ZK31-1.5Y合金的真应力-真应变曲线主要以动态再结晶和动态回复软化机制为特征,峰值应力和稳态应力随变形温度的降低或应变速率的升高显著增加。合金功率耗散图和失稳图中分别包含了3个效率峰值区和1个马鞍形流变失稳区,峰区效率范围为38%~65%,叠加后形成的加工图给出了实验参数范围内热变形时的最优工艺参数,其热变形温度为350~450℃、应变速率为0.1~1 s-1。当应变量由0.1~0.6逐渐增大时对加工图分布规律影响不大。  相似文献   

17.
采用Gleeble-1500D热模拟试验机进行热压缩实验,研究了TC4-DT钛合金在温度850~980℃、应变速率为0.001~10 s-1、变形量为50%条件下的热变形行为.根据应力-应变曲线分析了该合金的流变应力变化特点,建立了该合金的Arrhenius型本构方程及加工图.结果表明:流变应力随变形温度降低及应变速率增大而升高;变形温度与应变速率对TC4-DT合金应力影响显著;本实验测得的平均激活能为587.2 kJ/mol;该合金合适的加工条件为ε<0.6 s-1,温度大于850℃.  相似文献   

18.
为了分析TA7钛合金的热变形工艺参数,通过高温压缩试验对TA7钛合金的高温变形行为进行了研究。试验温度为1123~1273K,应变速率为0.001~1s-1。此外,提出了一种修正并联本构模型用来分析应变速率、变形温度及应变对流动应力的影响。然后,基于动态模型,建立了TA7钛合金的热加工图,并通过微观组织分析对加工图的准确性进行了验证。结果表明,TA7钛合金合理的工艺参数为变形温度1223K,应变速率0.001s-1,而其非稳态区域位于低温高应变速率区。  相似文献   

19.
在GLEEBLE热模拟试验机上对变形态Ti40合金进行热压缩实验,采用基于Prasad准则的加工图技术,研究变形态Ti40合金在变形温度950℃~1100℃、应变速率0.001s-1~1.0s-1范围内的微观变形机制和流变失稳现象,并优化该合金的高温变形参数。结果表明,失稳区出现在低温、高应变速率区,当变形温度为950℃~1010℃、应变速率0.13s-1~1.0s-1时,失稳区会出现局部流动,在实际热加工时应尽量避开这一参数范围;变形温度950℃~1100℃、应变速率0.001s-1~0.01s-1为较佳的变形参数范围,其变形机制以动态再结晶为主,伴随动态回复,最佳的变形参数位于温度1050℃、应变速率0.001s-1附近,该区域发生了完全动态再结晶;除失稳区和较佳变形区以外的区域,变形机制以动态回复为主,伴随动态再结晶,是可加工的区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号