首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 134 毫秒
1.
The as-cast multi-element Mg–4Gd–1Y–1Zn–0.5Ca–1Zr alloy with low rare earth additions was prepared, and the solution treatment was applied at different temperatures. The microstructural evolution of the alloy was characterized by optical microscopy and scanning electron microscopy, and corrosion properties of the alloy in 3.5% NaCl solution were evaluated by immersion and electrochemical tests. The results indicate that the as-cast alloy is composed of the a-Mg matrix,lamellar long-period stacking-ordered(LPSO) structure and eutectic phase. The LPSO structure exists with more volume fraction in the alloy solution-treated at 440 °C, but disappears with the increase in the solution temperature. For all the solution-treated alloys, the precipitated phases are detected. The corrosion rates of the alloys decrease first and then increase slightly with the increase in the solution temperature, and the corrosion resistance of the solution-treated alloys is more than four times as good as that of the as-cast alloy. In addition, the alloy solution-treated at 480 °C for 6 h shows the best corrosion property.  相似文献   

2.
Effects of equal channel angular pressing(ECAP) extrusion on the microstructure, mechanical properties and biodegradability of Mg–2Zn– xGd–0.5Zr( x=0,0.5,1,2 wt%) alloys were studied in this work. Microstructure analysis, tensile test at ambient temperature, immersion test and electrochemical test in Hank's solution were carried out. The results showed that Gd could further enhance the grain refinement during the ECAP extrusion. Both Gd addition and ECAP extrusion could improve the mechanical properties of the alloys, and the extrusion played the dominant role. Minor addition of Gd(0.5–1 wt%) could obviously enhance the corrosion resistance of the alloys. To some extent, ECAP extrusion improved the corrosion resistance of the alloys due to the change of second phases distribution and the refinement of grains. Further increase in extrusion pass was detrimental to the improvement of the corrosion resistance as a result of increment of the grain boundaries.  相似文献   

3.
As-cast microstructure and mechanical properties of Mg-6Zn-2Al-0.3Mn (ZA62) alloys with calcium addition were investigated.The as-cast microstructure of the base alloy ZA62 consists of the α-Mg matrix and eutectic phase Mg51Zn20.The Mg51Zn20 eutectic was gradually replaced by MgZn phase and Mg32(Al,Zn)49 phase when calcium is added into the base alloy.Further addition of calcium leads to the increase of grain boundary phases and formation of a new quaternary Mg-Zn-Al-Ca eutectic compound.In comparison with the base alloy,the increase of calcium addition to the base alloy results in the reduction of both strength and ductility at ambient temperature,but increase at elevated temperatures due to the thermal stability of Ca-containing phases.At elevated temperatures,the creep resistance of ZA62 based alloys containing calcium is significantly higher than that of AZ91 which is the most commonly used magnesium alloy.  相似文献   

4.
The microstructure, texture, residual stress, and tensile properties of Mg–6 Zn–2 Y–1 La–0.5 Zr(wt%) magnesium alloy were investigated before and after extrusion process, which performed at 300 °C and 400 °C. The microstructural characterizations indicated that the as-cast alloy was comprised of α-Mg, Mg–Zn, Mg–Zn–La, and Mg–Zn–Y phases. During homogenization at 400 °C for 24 h, most of the secondary phases exhibited partial dissolution. Extrusion process led to a remarkable grain refi nement due to dynamic recrystallization(DRX). The degree of DRX and the DRXed grain size increased with increasing extrusion temperature. The homogenized alloy did not show a preferential crystallographic orientation, whereas the extruded alloys showed strong basal texture. The extrusion process led to a signifi cant improvement on the compressive residual stress and mechanical properties. The alloy extruded at 300 °C exhibited the highest basal texture intensity, the compressive residual stress and hardness, and yield and tensile strengths among the studied alloys.  相似文献   

5.
Mg–9Li–3Al–1.6Y alloys were prepared through mixture method. The microstructure, mechanical properties, and corrosion resistance of the as-cast and asextruded alloys were studied by optical microscopy(OM),scanning electronic microscopy(SEM), X-ray diffraction(XRD), mechanical properties testing, and electrochemical measurement. The as-cast Mg–9Li–3Al–1.6Y alloy with the average grain size of 325 lm is composed of b-Li matrix, block a-Mg, and granule Al_2Y phases. After extrusion, the grain size of the as-cast alloy is obviously refined and reaches to 75 lm; the strength and elongation of the extruded alloy are enhanced by 17.20 % and49.45 %, respectively, owing to their fine microstructure and reduction of casting defects. The as-extruded alloy shows better corrosion resistance compared to the as-cast one, which may be related to the low stored energy and dislocation density in the extruded alloy, also the homogenization treatment before extrusion.  相似文献   

6.
The effect of Nd addition and the in?uence of extrusion processes on the microstructure and mechanical properties of Mg–6Zn–0.5Zr(ZK60) and Mg–6Zn–1.5Nd–0.5Zr(ZKNd602) alloys were investigated. Nd element can obviously re?ne the microstructure of both as-cast and asextruded Mg–Zn–Nd–Zr alloy. All of the extruded alloys exhibit a bimodal grain structure composed of equiaxed?ne recrystallized(DRXed) grains and elongated coarse un DRXed grains. It is necessary to achieve high strength,particularly the yield strength, for ZKNd602 alloy, when it is extruded with a lower extrusion temperature, a suitable extrusion ratio and a relatively lower extrusion ram speed. In this study, the ultimate tensile strength(UTS),yield strength(YS) and elongation(El) of the extruded ZKNd602 alloy were 421 MPa, 402 MPa and 6.7 %,respectively, with extrusion temperature of 290 °C, extrusion ratio of 18:1 and a ram speed of approximate0.4 mm·s~(-1). Meanwhile, the extrusion process has obvious effects on the room-temperature properties but weak effects on the high-temperature properties.  相似文献   

7.
The multidirectional forging(MDF) process was conducted at temperature of 753 K to optimize the mechanical properties of as-homogenized Mg–13 Gd–4 Y–2 Zn–0.6 Zr alloy containing long-period stacking ordered phase. The effects of MDF passes on microstructure evolution and mechanical properties were also investigated. The results show that both the volume fraction of dynamic recrystallization(DRX) grains and mechanical properties of the deformed alloy enhanced with MDF passes increasing till seven passes. The average grain size decreased from 76 to 2.24 lm after seven passes, while the average grain size increased to 7.12 lm after nine passes. The microstructure after seven passes demonstrated randomly oriented fine DRX grains and larger basal(0001)\11"20[ Schmid factor of 0.31. The superior mechanical properties at room temperature(RT) with ultimate tensile strength(UTS) of 416 MPa and fracture elongation of 4.12% can be obtained after seven passes. The mechanical properties at RT after nine passes are inferior to those after seven passes due to the coarsening of DRX grains, which can be ascribed to the static recovery resulting from the repeated heating at the interval of MDF passes. The elevated temperature mechanical properties of the deformed alloy after seven passes and nine passes were investigated. When test temperature was below 523 K, the elevated temperature tensile yield strength and UTS after seven passes are superior to those after nine passes, while they are inferior to that after nine passes as temperature exceeds523 K.  相似文献   

8.
The application of Mg-Zn binary alloys is restricted due to their developed dendritic microstructure and poor mechanical properties. In this study, an alloying method was used to improve the mechanical properties of Mg-Zn alloy. The Mg-6Zn magnesium alloys microalloyed with varying Cu content(0, 0.8, 1.5, 2.0 and 2.5wt.%) were fabricated by permanent mould casting, and the effects of Cu content on the microstructure and mechanical properties of as-cast Mg-6Zn alloys were studied using OM, SEM, XRD and tensile tests at room temperature. The obtained results show that the addition of Cu not only can refine the grains effectively, but also can modify the eutectic morphology and improve the mechanical properties of the alloys. The main phases of the studied alloys include α-Mg, MgZn_2, Mg_2Cu and CuMgZn. When the content of Cu exceeds 0.8wt.%, Mg_2Cu phase appears. Meanwhile, the eutectic morphology is modified into dendritic shape or lamellar structure, which has an adverse effect on the tensile properties. Furthermore, among the investigated alloys, the alloy containing 0.8% Cu shows an optimalultimate tensile strength of 196 MPa, while the alloy with 1.5wt.% Cu obtains an excellent elongation of 7.22%. The experimental alloys under different Cu contents show distinguishing fracture behaviors: the fracture of the alloy with 0.8wt.% Cu reveals a mixed mode of inter-granular and quasi-cleavage, while in other investigated alloys, the fracture behaviors are dominated by cleavage fracture.  相似文献   

9.
As-extruded Mg–Sr alloy, a kind of promising biodegradable biomedical material, was coated using micro-arc oxidation and also using a phosphate conversion coating. The corrosion behaviors were investigated using Hanks' solution. The corrosion of the as-extruded Mg–Sr alloy became more serious with increasing immersion time; that is, the corrosion pits became more numerous, larger and deeper. The micro-arc oxidation coating and the phosphate conversion coating were effective in improving the corrosion resistance of the as-extruded Mg–Sr alloy. The micro-arc oxidation coating was much more effective. Moreover, the as-extruded Mg–Sr alloy and the coated as-extruded Mg–Sr alloy exhibited lower corrosion rates than the as-cast Mg–Sr alloy and the corresponding coated as-cast Mg–Sr alloy, indicating that the corrosion properties of the coated samples are dependent on their substrates. The finer microstructure of the substrate of the as-extruded condition corroded much slower. The corrosion resistance of the coated Mg–Sr alloy depended on the coating itself and on the microstructure of the substrate.  相似文献   

10.
The microstructure, mechanical properties and corrosion behavior of Mg–2 Zn–0.6 Zr alloy under the as-cast and asextruded conditions were investigated. Microstructure analysis indicated the remarkable grain refinement by extrusion, as well as notable reductions in volume fraction and size of precipitate phases. As compared with the as-cast alloy, the asextruded alloy exhibited better mechanical performance, especially in yield strength which was promoted from 51 to 194 MPa. Refined grains, dispersive precipitate phases and texture were thought to be the main factors affecting the improved performance in strength. The electrochemical measurement and immersion test revealed the corrosion rate of Mg–2 Zn–0.6 Zr alloy by extrusion decreased from 1.68 to 0.32 mm/year. The reasons for the enhanced corrosion resistance were mainly attributed to the decreased volume fraction and Volta potential of the precipitate phases, the refinement of the grain size, as well as the formation of more protective corrosion film.  相似文献   

11.
通过在Mg-10Gd-2Y-0.5Zr合金中添加Zn,采用SEM、XRD及万能拉伸试验机,研究了Zn添加对其铸态组织和力学性能的影响。结果表明,Mg-10Gd-2Y-0.5Zr合金的铸态组织主要由α-Mg、Mg5(Gd,Y)和Mg24(Y,Gd)5相组成,而添加质量分数为0.5%~1.5%的Zn后,合金的铸态组织主要由α-Mg、Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5及Mg12(Gd,Y)Zn相组成。添加0.5%的Zn后,合金的室温力学性能明显提高,当Zn含量高于1.0%后,镁合金的室温力学性能开始逐步降低。当Zn含量为0.5%时,合金具有较佳的综合力学性能,其抗拉强度、屈服强度和伸长率分别为197 MPa、160 MPa和4.37%。Zn对Mg-10Gd-2Y-0.5Zr合金铸态力学性能的影响与其铸态组织中Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12(Gd,Y)Zn第二相及其数量有关。  相似文献   

12.
Mg-RE(rear earth) alloys with long period stacking(LPSO) structures have great potential in biomedical applications. The present work focused on the microstructure and corrosion behaviors of Mg 98.5 Y_1 Zn_(0.5) alloys with 18 R LPSO structure after equal channel angular pressing(ECAP). The results showed that the ECAP process changed the grain size and the distribution of LPSO particles thus controlled the total corrosion rates of Mg 98.5 Y_1 Zn_(0.5) alloys. During the ECAP process from 0 p to 12 p, the grain size reduced from 160–180 μm(as-cast) to 6–8 μm(12 p). The LPSO structures became kinked(4 p), then started to be broken into smaller pieces(8 p), and at last comminuted to fine particles and redistributed uniformly inside the matrix(12 p). The improvement in the corrosion resistance for ECAP samples was obtained from 0 p to 8 p, with the corrosion rate reduced from 3.24 mm/year(0 p) to 2.35 mm/year(8 p) in simulated body fluid, and the 12 p ECAP alloy exhibited the highest corrosion rate of 4.54 mm/year.  相似文献   

13.
通过改变镁的含量,设计了4种不同成分的Al-6.0Zn-xMg合金。采用光学显微镜(OM)、扫描电镜(SEM)、差式扫描量热分析仪(DSC)、硬度、导电率以及室温拉伸等分析测试方法,研究了Mg含量对Al-Zn-Mg合金铸态、均匀化态组织性能及T6态力学性能的影响。结果表明:4种铸态合金组织晶界附近存在大量共晶网状结构与链状第二相,主要为α(Al)+三元T(AlZnMg)相,合金中还存在少量的Al3(Zr,Ti)相和富铁相,提高Mg含量会使合金组织中的非平衡共晶相增加。合金均匀化处理后空冷,基体内有大量细小弥散的针状η(MgZn2)相析出,且随着Mg含量的提高,这种针状η(MgZn2)相的析出数量也逐渐增多。随着Mg含量增加,硬度逐渐增加,导电率逐渐下降,且均匀化态合金的硬度及导电率比铸态的高。4种T6态合金中Al-6.0Zn-2Mg合金的综合力学性能最佳。  相似文献   

14.
周鹏飞  陆从相  杨书根 《铸造》2021,(3):316-322
研究了新型高强度Al-Si-Mg-Mn合金组织和性能的演变。基于JMatPro相图模拟计算,设计了不同共晶体积分数的Al-Si-Mg-Mn合金成分。结果表明,新型Al-Si-Mg-Mn合金压铸后(铸态)的抗拉强度可达230~310 MPa,屈服强度200~240 MPa,伸长率约0.5%。铸态组织中包含α-Al、α-AlFeMnSi、二元(α-Al+α-AlFeMnSi/α-AlFeMnSi+Mg2Si)、四元(α-Al+α-AlMnSiFe+Mg2Si+Si)共晶。微观组织观察表明,细小α-AlFeMnSi相和多尺度的共晶组织的形成使得该合金具有高的强度;断口形貌分析发现,合金伸长率较低是较大的气孔以及粗大的第二相直接导致的。  相似文献   

15.
The biomedical co-continuous (β-TCP+MgO)/Zn-Mg composite was fabricated by infiltrating Zn-Mg alloy into porous β-TCP+MgO using suction exsorption technique. The microstructure, mechanical properties and corrosion behaviors of the composite were evaluated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical testing, electrochemical and immersion test. It was found that the molten Zn-Mg alloy had infiltrated not only into the pores but also into the struts of the porous β-TCP+MgO scaffold to form a compact composite. The Zn-Mg alloy contacted to the β-TCP+MgO scaffold closely, and no reaction layer can be found between the alloy and the scaffold. The compressive strength of the composite was as high as 244 MPa, which was about 1000 times higher than that of the original porous β-TCP+MgO scaffold and 2/3 of the strength of the Zn-Mg bulk alloy. The electrochemical and immersion tests in simulated body fluid (SBF) solution indicated that the corrosion resistance of the composite was better than that of the Zn-Mg bulk alloy. The corrosion products on the composite surface were mainly Zn(OH)2. Appropriate mechanical and corrosion properties indicated that the (β-TCP+MgO)/Zn-Mg composite fabricated by suction exsorption would be a very promising candidate for bone substitute.  相似文献   

16.
This paper described the mechanical properties and corrosion behaviour of new designed Mg–Gd–Nd–Zn–Zr alloy processed by equal channel angular pressing (ECAP) at 375°C. An attractive phenomenon was observed. Both strength and ductility of ultrafine grained Mg–Gd–Nd–Zn–Zr alloy were improved after multipass ECAP. The microstructure of the alloys became much finer and more homogeneous with increasing ECAP passes. The yield strength, ultimate tensile strength and elongation of the alloys under eight-pass ECAP process were over 223?MPa, 270?MPa and 36% respectively, showing desirable mechanical properties of equal channel angular pressed Mg–Gd–Nd–Zn–Zr alloy. The equal channel angular pressed alloy displayed a lower corrosion resistance immersed in Hank's solution due to the crystalline defects as well as the galvanic corrosion induced by precipitation of ultrafine β phase particles.  相似文献   

17.
RE、Sr对高铁ZL101合金组织和性能的影响   总被引:1,自引:0,他引:1  
采用光学显微镜、X射线衍射仪和INSTRON5882材料试验机研究了加入量为0.12%的Sr与不同含量的RE(RE含量分别为0、0.12%、0.24%、0.36%、0.48%和0.60%)复合加入对Fe含量为1.2%的ZL101合金组织和性能的影响。结果表明,在Sr加入量一定的情况下,适量RE与Sr复合变质可明显地改善高铁ZL101合金中的针片状β-Fe相形貌,使其由针状转变为细小的短棒状。同时,可以细化α-Al晶粒,T6热处理使共晶硅变为颗粒状。适量RE能提高Sr变质高铁ZL101合金的抗拉强度,但对其伸长率的提高不明显。当Sr含量为0.12%,RE含量为0.36%时,高铁ZL101合金在T6热处理态下的抗拉强度最大值为213MPa,比对应的铸态168MPa,提高了26.8%。  相似文献   

18.
In this work, the effects of Zn content (0-2 wt%) on microstructural evolution and mechanical properties of cast Mg-10Gd-3.5Er-0.5Zr alloys are studied. The results show that the as-cast Mg-10Gd-3.5Er-xZn-0.5Zr alloys are mainly composed of Mg matrix and secondary (Mg, Zn)3(Gd, Er) phases distributed along grain boundaries. With the increase in Zn content, the volume fraction of secondary (Mg, Zn)3(Gd, Er) phases increases and the grains get refined. In the process of solid solution treatment, Zn addition can lead to the formation of long-period stacking ordered (LPSO) structures and the volume fraction of LPSO structures increases with Zn content. In addition, the Zn addition can reduce the vacancy formation energy and accelerate the diffusion rate of RE elements in Mg matrix. Because of the comprehensive effect of secondary phases and the accelerated diffusion rate, the base alloy and 2Zn alloy have less grain growth after solid solution treatment than that of the 0.5Zn alloy and 1Zn alloy. The precipitation process is also accelerated by enhanced diffusion rate. At room temperature (RT), the strengthening effect of β'+ β1 precipitates is more effective than that of LPSO structures, so the peak-aged 0.5Zn alloy exhibits the most excellent mechanical performance at RT, with yield strength of 219 MPa, ultimate tensile strength 296 MPa and elongation of 6.4%. While LPSO structures have stronger strengthening effect at elevated temperature than that of β'+ β1 precipitates, so the 1Zn alloy and 2Zn alloy have more stable mechanical performance than that of the base alloy and 0.5Zn alloy with the increase in tensile temperature.  相似文献   

19.
针对磁悬浮熔炼的铸态CrCoNi合金,在室温条件下,进行变形量为50%的冷轧变形,研究了铸态及变形后合金的物相成分、显微组织、力学性能及耐腐蚀性能。结果发现,铸态CrCoNi合金在变形前后没有发生物相变化,依旧为FCC单相结构;铸态组织分布不均匀,经过轧制变形后,晶粒被破碎与拉长;随变形道次增加,强度提升,塑性下降。同时发现,相比于铸态,经过轧制变形后的CrCoNi合金耐腐蚀性得到改善,且均优于304不锈钢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号