首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
敏化对不锈钢孔蚀性能的影响   总被引:6,自引:0,他引:6  
用电化学测试技术研究了不同敏化处理的304不锈钢的耐孔蚀性能,探讨了Cl-浓度、温度和pH值对孔蚀电位Eb的影响。结果表明,敏化热处理导致Eb值下降;随Cl-浓度增加,介质温度升高,pH下降,使Eb值变负;不锈钢的晶间腐蚀使耐孔蚀性能变劣  相似文献   

2.
Due to their good corrosion resistance, favorable mechanical properties, and reasonable price regarding their excellent properties, austenitic stainless steels have, over recent decades, become one of the alloys that are increasingly used in civil engineering and building, as well as for specific architectural purposes. Architects often design stainless steel exterior elements with higher surface roughnesses, which are not resistant to corrosion processes. The aim of this work was to investigate the influence of different types of surface finishes to stainless steel of quality AISI 304 on the corrosion properties of this steel. In order to achieve this goal, electrochemical tests were performed on different surface finishes in two different environments: in an NaCl aqueous solution, and in simulated urban rain which contained no chlorides. In addition to the electrochemical methods used, surface roughness was also measured, and XPS surface analyses were performed. The results of the investigation showed that surface roughness affects the growth of the passive layer in urban rain significantly; however, the growth of such a film is retarded in the case of the NaCl aqueous solution. Based on the results of the performed analyses, it was found that, in the NaCl solution, the pitting potential depended strongly upon the surface roughness and the surface finish, but this was not true for the samples tested in urban rain.  相似文献   

3.
马宏驰  吴伟  周霄骋  王亮 《表面技术》2018,47(11):126-133
目的 对比研究原始、固溶和敏化态的304和321奥氏体不锈钢在模拟加氢催化氯化铵环境中的应力腐蚀(SCC)行为及机理。方法 将304和321奥氏体不锈钢经过热处理制备成固溶和敏化态试样,采用U形弯试样在模拟加氢催化氯化铵环境中浸泡的应力腐蚀试验方法对其进行研究,通过观察U形弯弧顶的腐蚀形貌和开裂时间,并结合腐蚀及裂纹的SEM照片和电化学测试结果进行分析。结果 原始和固溶状态304不锈钢U形弯试样在氯化铵溶液环境中开裂时间为25 d左右,断口形貌分别为穿晶断口和沿晶断口;敏化态试样18 d后发生开裂,断口形貌为穿晶和沿晶的混合断口。原始和固溶态321不锈钢U形弯试样在该环境中经过39 d均无应力腐蚀裂纹;敏化试样经30 d后产生宏观开裂。电化学测试结果显示,不同热处理态的304不锈钢在氯化铵溶液中均具有明显的点蚀敏感性,321不锈钢在该环境中耐点蚀和应力腐蚀的能力优于304不锈钢。结论 不同状态的304不锈钢在高温氯化铵环境中具有较强的应力腐蚀倾向,特别是敏化态试样;321不锈钢在该环境中的应力腐蚀敏感性相对较小,但敏化处理显著增加了其沿晶应力腐蚀倾向,而固溶态试样具有明显的沿晶腐蚀特征。  相似文献   

4.
Different laser energy densities were utilized to treat AISI 304 stainless steel via Nd:YAG pulsed laser surface melting (LSM). The surface composition and microstructure of the stainless steel were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM). In particular, the corrosion behaviors of the stainless steel surface without and with LSM were evaluated by the electrochemical polarization measurement in 3.5 wt.% NaCl aqueous solution at room temperature. The results showed that the stainless steel surface without LSM suffered severe localized pitting under the testing conditions. A thin surface oxide protective layer was produced on the stainless steel surface with LSM, which considerably improved the corrosion resistance properties of the stainless steel. The height differences of the corrosion regions on the stainless steel surface with LSM were measured to establish more corrosion resistant region, using scanning confocal laser microscopy. The underlying corrosion mechanism of the stainless steel with LSM was revealed.  相似文献   

5.
The martensite in metastable-austenite-stainless-steels may decrease the corrosion resistance of the steels. Electrochemically induced surface annealing (EISA) can decrease the content of martensite in the steels, so it can promote the pitting resistance of the steels. But EISA treatment has to be operated on the condition of electrolyte immersion, which is an obstacle for its actual application. In this paper AISI304L stainless steel samples were treated with a no-immersion device. The martensite content of the steel decreased after the treatment, but the hardness of the steel almost had no change. The EISA effect was achieved with the no-immersion device. After the corrosion in a 3.5% NaCl aqueous solution, the EISA treated samples had less, smaller and shallower pits than the untreated samples had. The pitting potential of the EISA treated samples was almost equal to that of the untreated samples, and the open circuit potential of the EISA treated samples was higher than that of the untreated samples. The no-immersion EISA treatment promotes the pitting resistance of metastable-austenite-stainless-steels.  相似文献   

6.
L. Freire  G. Pena 《Corrosion Science》2008,50(11):3205-3212
Electrochemical techniques (CV, SECM, CPT) and surface analysis techniques (EDX, SEM) have been employed to assess the corrosion behaviour of the AISI 204Cu stainless steel. The behaviour of this steel has been compared with that of AISI 304 and AISI 434 stainless steels in chlorinated alkaline media. All samples performed well at room temperature under potentiodynamic polarisation up to a chloride to hydroxyl ratio of 10. At this ratio the AISI 204Cu and the AISI 434 steels presented pitting potential at +0.47 V vs. SCE and +0.31 V vs. SCE, respectively. Moreover, the critical pitting temperature was higher for the AISI 204Cu steel than for the AISI 434 steel, respectively 58 °C and 28 °C.In terms of corrosion performance of the AISI 204Cu stainless steel can be classified better than the AISI 434 steel and worse than the AISI 304 steel.Local electrochemical and chemical examinations allowed evidencing the local activity of some pits over long period, and to conclude that the improved corrosion performance of the low nickel alloy AISI 204Cu stainless steel should be ascribed to copper cementation at active corrosion sites.  相似文献   

7.
In this study, two styles of surface topographies have been created on stainless steel wires to test their corrosion resistance as simulated implanted biomedical devices. Grade 316 LVM stainless steel wire was initially polished to G1500 surface finish before treatment to produce the two different topographies: 1. Unidirectional roughness was created using SiC papers and 2. Various patterns were created with specific hole diameter and inter-hole spacing using focused ion beam (FIB). In order to simulate the environment of implanted biomedical devices, a three-electrode electrochemical cell with 0.9% (by mass) NaCl solution has been used to test the corrosion resistance of the samples by potentiodynamic polarization test method. SEM and EDS analyzed the appearance and chemical composition of different elements including oxygen on the surface. The potential of stable pitting, time related to the initiation of the stable pitting, and the highest corrosion current associated with stable pitting have been compared for samples with the two styles of topography. It was found that surfaces with patterns have a relatively higher pitting potential and it takes longer time to initiate stable pitting than the surface without any patterns.  相似文献   

8.
304 不锈钢在氯化钠介质中点蚀缓蚀剂的研究   总被引:7,自引:4,他引:3  
郝震  戴恒彪  李广州  丁毅  孟宪虎 《表面技术》2015,44(4):123-126,131
目的研究钼酸钠、葡萄糖酸钠及其复配物在氯化钠介质中,对304不锈钢点蚀的缓蚀作用。方法对钼酸钠、葡萄糖酸钠按不同配比进行复配得到不同缓蚀剂,采用极化曲线法分别测试在这几种缓蚀剂存在的条件下,304不锈钢在3.5%(质量分数,后同)NaCl溶液中的点蚀电位。结果单组分的钼酸钠、葡萄糖酸钠对在3.5%NaCl介质中的304不锈钢点蚀有一定的抑制作用,且两种缓蚀剂有明显的协同缓蚀效应。结论当复配缓蚀剂配比为c(钼酸钠)∶c(葡萄糖酸钠)=2∶1时,其缓蚀效果达到最佳,点蚀电位为436 mV。  相似文献   

9.
氯化物溶液中敏化304不锈钢应力腐蚀开裂的临界电位   总被引:1,自引:0,他引:1  
研究了氯化物浓度、溶液温度、应力及敏化程度对敏化304不锈钢在NaCI水溶液中晶间型应力腐蚀开裂的影响。结果表明,材料的敏化程度、NaCI浓度、溶液温度和应力对敏化304不锈钢的ER.SCC有显著的影响,敏化304不锈钢的DR.SCC低于ER.CREV,应力腐蚀开裂发生在正于ER.SCC的电位范围,而电位低于该值则免于发生应力腐蚀开裂,由此得知,ER.SCC可适用于评价敏化不锈钢的应力腐蚀开裂敏感性。  相似文献   

10.
表面粗糙度对304不锈钢早期点蚀行为影响的电化学方法   总被引:1,自引:0,他引:1  
采用动电位扫描、电化学阻抗谱和电化学噪声等方法研究了4种不同表面粗糙度304不锈钢电极在质量分数为3%的NaCl溶液中的早期腐蚀行为.随着不锈钢电极表面粗糙度的下降,304不锈钢自腐蚀电位与点蚀电位均有所上升;电荷转移电阻噪声电阻明显升高,而电位标准偏差与电流标准偏差则有所降低;粗糙度0.25μm的电极在阻抗谱低频区出...  相似文献   

11.
A large number of production and laboratory heats in grades AISI 304 and 316 with normal and extremely low managanese and sulphur contents and a number of production heats in more highly alloyed austenitic stainless steels have been studied with regard to their resistance to initiation of pitting and crevice corrosion at various temperatures. The criteria for resistance to initiation was the potentiodynamic pitting potential in 0.1 M NaCl and synthetic seawater and the time to attack initiation for crevice corrosion in 0.5 and 5% NaCl solutions. A large number of production and laboratory heats in grades AISI 304 and 316 with normal and extremely low managanese and sulphur contents and a number of production heats in more highly alloyed austenitic stainless steels have been studied with regard to their resistance to initiation of pitting and crevice corrosion at various temperatures. The critieria for resistance to initiation was the potentiodynamic pitting potential in 0.1 M NaCl and synthetic seawater and the time to attack initiation for crevice corrosion in 0.5 and 5% NaCl solutions. The main aims of the study were to examine both the effect of manganese relative to that of chromium, molybdenum and sulphur and the effect of heat treatment and sulphide composition on steels with low manganese contents. Mathematical models for calculation of the pitting potentials have been constructed and multiple linear regression analysis gave the equations and their reliabilities. Lowering of the Mn content in austenitic stainless steels to 0.2% gives rise to a material of interest for constructions where pitting or crevice corrosion are judged to be the only potential types of attack, where operational disturbances leading to greatly increased corrosivity do not occur, where attack can not be tolerated, and where steel with normal managanese content has not exhibited fully satisfactory corrosion resistance. If the above conditions are fulfilled the low manganese content can be said to correspond to the same positive effect as is obtained by an addition of the least 1.5% Mo.  相似文献   

12.
The pitting and crevice corrosion behaviour of stainless steels as a function of temperature and salinity (chlorides) of industrial waters has been considered in connection with environmental modification occurring because of the attack propagation. The actual meaning and the practical importance of the protection potential are examined and conclusions are drawn taking into account both the potential and non-potential dependent initiation and growth of corrosion phenomena. In this concern, the theoretical background and practical conditions for localized corrosion prevention by cathodic-anodic protection are discussed. Experimental stability diagrams of four stainless steel grades (AISI 304, 316, 430 and 410) at 22, 44 and 64°C are obtained and expressed in terms of electrode potential vs NaCl content in water.  相似文献   

13.
节镍型不锈钢的耐腐蚀性能比较   总被引:1,自引:0,他引:1  
通过3.5%NaCl溶液中动电位极化曲线测定和中性盐雾试验,对200系列奥氏体不锈钢和400系列铁素体不锈钢两类节镍型不锈钢与304不锈钢的耐腐蚀性能进行了对比研究。结果显示,400系列铁素体不锈钢的耐点蚀性能优于200系列奥氏体不锈钢,两种节镍型不锈钢的耐点蚀性能均不如304不锈钢好;200系列奥氏体不锈钢的耐均匀腐蚀性能最差,443不锈钢耐均匀腐蚀性能与304不锈钢相当,439不锈钢比304不锈钢耐均匀腐蚀性能稍差。201、202、304、439和443不锈钢在3.5%NaCl溶液中的点蚀电位分别为(vs.SCE)-32 mV、-22 mV、312mV、165 mV和227 mV,腐蚀速率分别为0.0071 mm/a、0.0062 mm/a、0.0026 mm/a、0.0038 mm/a和0.0024mm/a。  相似文献   

14.
基于镀锡银钎料钎焊304不锈钢接头的腐蚀行为   总被引:2,自引:2,他引:0       下载免费PDF全文
为揭示304不锈钢钎焊接头的腐蚀行为,以BAg50CuZn钎料为基材,采用电镀扩散工艺制备AgCuZnSn钎料,对304不锈钢进行感应钎焊,在60 ℃,3.5% NaCl溶液中评价不锈钢接头的局部腐蚀性,借助扫描电镜对其腐蚀形貌进行分析. 结果表明,经NaCl溶液腐蚀后,钎缝与不锈钢界面出现较长的腐蚀沟;304不锈钢表面腐蚀较严重,存在大范围坑洞、裂纹等缺欠,而钎缝区几乎无腐蚀缺欠,优先被腐蚀的是富铜相. 随着腐蚀时间延长,钎缝和304不锈钢的腐蚀速率均呈现先升高后降低的趋势,钎缝腐蚀速率略低于母材;腐蚀2.5 h后,钎缝区和304不锈钢的平均腐蚀速率分别为0.098和0.104 g/(m2·h).  相似文献   

15.
The corrosion behaviour of copper and AISI 304 stainless steel and the galvanic corrosion generated by the copper/AISI 304 pair, have been studied by electrochemical methods. These materials have been tested in an 850 g/L LiBr solution at different temperatures (25-75 °C) and at different Reynolds numbers (1456-5066) in order to study their performance in absorption machines. Results show that copper was always the anodic element of the pair and its corrosion resistance decreases due to the AISI 304 stainless steel galvanic effect. Galvanic corrosion increases with temperature and Reynolds number. However, it was proved that the effect of temperature on galvanic corrosion is more influential than the Reynolds number effect. This fact is also certain for corrosion of uncoupled copper and for corrosion of AISI 304 stainless steel. Experimental values of the corrosion current densities fit well the Arrhenius plot at all the Reynolds numbers analysed and a potential relation between the corrosion current densities and the Reynolds number has been found.  相似文献   

16.
Mn and Mo were introduced in AISI 304 and 316 stainless steel composition to modify their pitting corrosion resistance in chloride-containing media. Corrosion behaviour was investigated using gravimetric tests in 6 wt.% FeCl3, as well as potentiodynamic and potentiostatic polarization measurements in 3.5 wt.% NaCl. Additionally, the mechanism of the corrosion attack developed on the material surface was analysed by scanning electron microscopy (SEM), X-ray mapping and energy dispersive X-ray (EDX) analysis. The beneficial effect of Mo additions was assigned to Mo6+ presence within the passive film, rendering it more stable against breakdown caused by attack of aggressive Cl ions, and to the formation of Mo insoluble compounds in the aggressive pit environment facilitating the pit repassivation. Conversely, Mn additions exerted an opposite effect, mainly due to the presence of MnS inclusions which acted as pitting initiators.  相似文献   

17.
The pitting corrosion of intermetallic compound Ni3(Si,Ti) was investigated as functions of test temperature and chloride concentration in sodium chloride solutions by using a potential step method. In addition, the pitting corrosion of solution-annealed austenitic stainless steel type 304 and pure nickel was also studied under the same experimental condition for comparison. The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration and test temperature. A critical chloride concentration below which no pitting corrosion took place was found to exist and to decrease with increasing test temperature. The specific pitting potential at the critical chloride concentration also decreased with increasing test temperature. In addition, the pitting potential at various constant chloride concentrations above the critical chloride concentration decreased with increasing test temperature. The pitting potential of Ni3(Si,Ti) was higher than pure nickel, but lower than that of type 304.  相似文献   

18.
Pitting corrosion is one of the most common mechanisms of surface damage on stainless steels. Electrochemical methods have been preferentially applied for the evaluation of the pitting corrosion resistance of stainless steels in the laboratory. Nevertheless, some of them are not reliable enough and in general the application of electrochemical methods in the field becomes difficult because of required deep understanding of corrosive phenomena and measurement technology. Therefore, new approaches for the evaluation of the pitting corrosion susceptibility of stainless steel surfaces in the laboratory as well as in the field are necessary. In the present paper two novel strategies including electrochemical noise measurements under anodic polarization for laboratory testing, and an indicator test to assess the susceptibility of stainless steel surfaces to pitting corrosion in the field are introduced. Experimental results concerning the influence of surface treatments on the pitting corrosion resistance on stainless steels have confirmed that final surface condition has a significant effect on their future pitting corrosion susceptibility. In addition, the pitting corrosion resistance of stainless steel surfaces was observed being specifically dependent on the achieved surface topography and in some cases independent on the roughness parameters of the surface.  相似文献   

19.
Following the success of forming a carbon S-phase (expanded austenite) surface layer on medical grade Ni-free austenitic stainless steel by DC plasma carburising, the established commercial carburising process Kolsterising® was performed on both Ni-containing (AISI 304) and Ni-free austenitic stainless steels. While the Ni-containing stainless steel responded very well to Kolsterising®, the Ni-free alloy did not. The carbon absorption and the hardness of the Kolsterised® Ni-free alloy are inferior to Kolsterised® AISI 304 Ni-containing stainless steel, however, the hardness of the untreated Ni-free alloy was doubled by Kolsterising®. The response of both Kolsterised® Ni-free and Ni-containing alloys to pitting, crevice corrosion and intergranular corrosion resistance was similar. From this work it can be concluded that the Kolsterised® austenitic stainless steels do not suffer from intergranular corrosion but are susceptible to intragranular pitting when tested in boiling sulphuric acid and copper sulphate solution. It was also observed that Kolsterising® improves significantly the pitting and crevice corrosion resistance of the alloys used in this study.  相似文献   

20.
采用浸泡试验结合极化曲线以及电化学阻抗测试研究了304不锈钢在含不同浓度Cl-的水溶液中的腐蚀行为。结果表明引起304不锈钢产生明显点蚀的NaCl浓度为0.4%;随Cl-浓度和温度的升高,点蚀现象加重;点蚀电位与温度之间存在一线性关系;阻抗谱测试也显示出NaCl浓度大于0.4%后对钝化膜的破坏性显著增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号