首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
为了研究TC18钛合金在等高温压缩过程中组织与性能的变化,以Gleeble-1500热模拟试验机进行等高温压缩试验,计算得到所有试样的单向压缩膨胀系数均大于0.9,验证了热压缩试验的有效性。通过控制变量法研究不同变形温度和应变速率对其力学性能以及微观组织的影响,结果表明:TC18钛合金等高温热压缩时,流变应力随着变形温度的升高而降低,随着应变速率的增大而增大;而随着温度和应变速率的增加,组织中的初生等轴α相和次生针状α相逐渐发生相变而消失,β相逐渐长大形成粗大的β晶粒组织,并伴随有动态回复和动态再结晶两种软化机制。  相似文献   

2.
利用热/力学模拟试验机,对40Cr钢进行了变形温度为950、760、710℃,应变速率为0.1、0.5、10、30 s-1,应变量为0.7的热模拟单向单道次压缩试验.分析了试样热变形后的最大直径、横向最大真应变以及变形过程中的最大应力.结果表明,随着变形温度的降低,应变真应力明显上升,试样变形不均匀程度略有增加;40Cr钢在应变速率为10 s-1及以上时,试样变形不均匀程度明显,且不均匀程度随应变速率的增加而增大.  相似文献   

3.
在Themoresto-W热模拟试验机上对410S不锈钢进行压缩试验,获得不同变形条件下的真应力-真应变曲线,用JP-200型倒置金相显微镜观察不同温度下410S压缩试样的显微组织;分析了应变速率为2.5 s-1时,变形温度对真应力-真应变曲线的影响,变形温度和变形部位对压缩试样显微组织的影响。结果表明,在相同应变速率下,真应力随变形温度增加而下降;试样中心部位受力及变形情况最彻底,为显微组织最好观察区域;随变形温度升高,再结晶变得越来越易进行,动态再结晶程度和晶粒尺寸也均增大。  相似文献   

4.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

5.
316LN奥氏体不锈钢的高温流变行为与本构模型   总被引:1,自引:0,他引:1       下载免费PDF全文
利用Gleeble-3500热模拟试验机对锻造态316LN不锈钢进行了等温热压缩试验,研究了应变速率为0.001~1 s-1、变形温度为1223~1523 K、压缩变形量为65%条件下材料的高温流变行为,建立了流变应力本构模型,并将其应用于Deform-3D软件平台,通过导入新材料数据,考虑界面摩擦等尺寸仿真了热模拟试验结果。结果表明:相同应变速率下,随着变形温度升高,316LN奥氏体不锈钢的压缩应力逐渐减小;相同变形温度下,随着应变速率增加,材料的压缩应力逐渐增大;且在真应力-真应变曲线中,随应变量增大,压应力在后期逐渐达到一个稳定值;考虑界面摩擦因数,并利用Arrhenius本构模型进行变形模拟仿真说明了本构方程和仿真模型的有效性和可靠性,可为316LN不锈钢材料的工程应用提供研究基础和理论依据。  相似文献   

6.
在变形温度950~1150 ℃和应变速率0.01~5 s-1下,通过Gleeble-3500热模拟试验机进行单道次压缩试验,研究了热变形工艺对含硫非调质钢F45MnVS流变应力及组织的影响。结果表明:随着应变速率的增大,热压缩过程中的峰值应力增加,随着温度的升高,峰值应力降低;动态再结晶平均晶粒尺寸随着应变速率、变形量的增加而减小,随着温度的提高而增大。  相似文献   

7.
采用多相场(Multi-phase-field,MPF)模型模拟动态再结晶晶粒的生长过程,并用Kocks-Mecking(KM)方程模拟其力学行为。用热力模拟机对SA508-3钢进行了不同温度和应变速率下的热压缩试验,从热压缩流动应力-应变曲线中提取SA508-3钢动态再结晶特征参数并用于计算动态再结晶模型参数。利用所得参数对SA508-3钢的动态再结晶过程进行了多相场模拟,预测了热塑性变形过程中的组织演变和真应力-真应变曲线,与试验结果吻合较好。试验和数值结果均表明,流动应力随应变速率的增大及变形温度的降低而增大。本文的方法可用于研究其它材料的动态再结晶行为,为优化热锻工艺提供指导。  相似文献   

8.
在Gleeble 1500D热模拟试验机上,采用高温等温压缩试验对Cu-Ni-Si-P-Cr合金在应变速率为0.01~5 s 1、变形温度为600~800℃条件下的流变应力行为进行研究,利用光学显微镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Ni-Si-P-Cr合金在热变形过程中发生了动态再结晶,且根据变形温度的不同,真应力—真应变曲线的特征有所不同。流变应力随变形温度升高而降低,随应变速率提高而增大。从流变应力、应变速率和温度的相关性得出该合金热压缩变形时的热变形激活能Q和本构方程。  相似文献   

9.
在Gleeble-3500热模拟机上对半固态7050铝合金进行了高温热压缩试验,研究了该合金在变形温度为420~465℃、应变速率为0.001~0.100s-1条件下的流变应力行为以及变形过程中的显微组织。结果表明,流变应力在变形初期随着应变的增大迅速增大,出现峰值应力后逐渐平稳,流变应力随着应变速率的增大而增大,随着变形温度的升高而下降;流变应力可以用双曲线正弦形式的关系来描述,通过线性拟合计算出该材料的形变激活能等参数,获得流变应力的本构方程。随着变形温度升高和应变速率降低,合金中拉长的晶粒变大,合金热压缩变形的主要软化机制为动态再结晶。  相似文献   

10.
在Gleeble-3800热模拟机上对2A12铝合金进行了高温压缩实验,获得了该铝合金在350~500℃和0.001~5 s-1变形速率下的真应力-真应变曲线。实验结果表明:初始阶段真应力随应变速率的增大而增大,应力在峰值后缓慢下降并逐渐保持平稳;当变形温度恒定时,真应力峰值随应变速率的增大而增大;当应变速率恒定时,真应力峰值随变形温度的升高而减小。根据实验数据,使用Origin软件采用一元线性回归的方法计算了2A12铝合金在热成形过程中的材料参数值:激活能、应力强度参数、结构因子及应力指数。  相似文献   

11.
采用Gleeble-3500热模拟试验机对Pd-20W合金进行热压缩试验,研究了合金在变形温度1000~1200 ℃、应变速率0.001~1.000 s-1条件下的流变应力以及变形过程中的显微组织。结果表明,合金的流变应力在变形初期随着真应变的增大快速上升,出现峰值应力后逐渐下降并达到稳态或略有下降。该合金热压缩变形的流变应力行为可用Zener-hollomon参数来描述,拟合计算得到了该材料的形变激活能等参数,获得流变应力的本构方程。热压缩变形后合金组织呈现一定程度的协同变形特征,晶界动态再结晶趋势增强,合金的主要软化机制为动态再结晶,表现出典型的应变诱发晶界形核机制特点。  相似文献   

12.
7B50铝合金热变形组织演变   总被引:2,自引:0,他引:2  
周坚  潘清林  张志野  陈琴 《热加工工艺》2012,41(2):20-23,132
利用Gleeble-1500热模拟试验机对7B50铝合金进行了变形温度300~460℃、应变速率0.001~1 s-1条件下的等温压缩试验,通过金相显微镜(OM)和透射电镜(TEM)等手段,研究分析了该合金在变形过程中热变形参数对微观组织的影响。结果表明:在变形初期,流变应力随应变的增加而增大,达到峰值后逐渐趋于平稳;应力峰值随温度的升高而减小,随应变速率的提高而增大;当变形温度较低或应变速率较高时,合金仅发生了动态回复,且合金组织中存在大量的位错和亚晶;随着温度的升高和应变速率的降低,合金中的主要软化机制由动态回复逐渐转变为动态再结晶。  相似文献   

13.
使用Gleeble-1500D热模拟试验机对9Ni钢进行了热压缩变形实验,研究其在应变量为0.8、 变形温度为800~1150℃、 应变速率为0.1~5 s-1下的热变形行为,并对不同热变形条件下实验样品的微观组织进行了系统研究.研究发现,针对不同的变形条件,真应力-真应变曲线中的流变应力随着变形温度的升高以及应变速率...  相似文献   

14.
杨新亮  葛长健  杨智 《热加工工艺》2012,41(16):71-73,76
基于热模拟压缩试验,研究了变形温度对TC4合金中温塑性变形过程中流动行为和微观组织演变的影响.热模拟压缩试验参数为560~660℃、0.1~50.0 s-1.结果表明,随着变形温度的升高,TC4合金的流动应力逐渐降低;随着应变速率的升高,变形温度对TC4合金流动应力的影响幅度逐渐降低;TC4合金中温塑性变形时的温度敏感性指数随应变和应变速率的增加而降低;随变形温度的升高,TC4合金微观组织均匀程度提高,α晶粒逐渐清晰可辨.  相似文献   

15.
采用热挤压工艺制备了新型高温IN690合金。采用Gleeble-3500热模拟试验机对IN690合金进行了等轴压缩试验,研究了不同温度、应变速率和变形量对IN690合金动态再结晶(DRX)的影响。采用金相显微镜和电子背散射衍射(EBSD)对IN690合金热变形前后的金相组织、晶粒取向、晶界分布和晶粒取向差进行了系统分析。试验得到的真应力-真应变曲线表明,随着温度的降低或应变速率的增加,IN690合金的流动应力增大。IN690合金变形过程中的软化机制主要是动态回复(DRV)和DRX;随着真应变的增加或应变速率的降低,大角度晶界所占比例增加,这是由于在大的真应变或低应变速率下的DRX形核所致。  相似文献   

16.
本文建立了三维元胞自动机(3D-CA)模型,通过热压缩试验和电子背散射衍表征技术(EBSD),对AZ31镁合金在热变形过程中的微观组织演化规律进行可视化和定量预测。根据试验得出的真应力-应变曲线,确定了3D-CA模型参数在试验条件下的取值,建立了模型参数与变形条件(应变、变形温度和应变速率)之间的关系。利用所建立的3D-CA模型,对AZ31镁合金在热变形过程中的流动行为和微观组织演化进行模拟和讨论。结果表明:再结晶体积分数随着应变的增大而增加,随着变形温度的增大或应变速率降低而增大,提高应变速率或降低温度可以细化再结晶晶粒。模拟结果与实验结果吻合较好,相对误差值在4.5%-16.2%之间,所建立的3D-CA模型能够较准确地预测镁合金AZ31的微观组织演化。  相似文献   

17.
采用Gleeble-1500热压缩模拟试验机进行压缩实验,研究ZK60(0.9Y+0.3Nd)镁合金在变形温度623~773K、应变速率0.001~1s-1的范围内的变形行为,计算应力指数和变形激活能,并采用Zener-Hollomon参数法构建合金高温塑性变形的本构关系。结果表明:在实验变形条件下,合金的真应力—真应变曲线为动态再结晶型;在实验温度范围内,应力指数随着变形温度的升高而增大,变形激活能随着变形温度和应变速率的增加而增大。对比ZK60合金,ZK60(0.9Y+0.3Nd)合金的变形激活能提高38%。  相似文献   

18.
2026铝合金热压缩变形流变应力行为   总被引:5,自引:1,他引:4  
在变形温度为300~450 ℃、应变速率为0.01~10 s-1的条件下,在Gleeble-1500热模拟机上采用圆柱体压缩实验对2026铝合金热变形流变应力行为进行了研究.由试验得出变形过程中的真应力真应变曲线,并利用本构方程对流变应力值进行修正,进而根据修正后的应力值绘制功率耗散图.结果表明:变形过程中的应力值随温度的升高而降低,随应变速率的增大而升高,且修正后的稳态应力值高于未修正值;可用Zener-Hollomon参数的双曲正弦形式来描述2026铝合金热压缩变形时的流变应力行为;高温低应变速率条件下的功率耗散系数最大,该变形区发生了组织转变.  相似文献   

19.
在Gleeble-1500热模拟机上对7056铝合金进行热压缩实验,变形温度为300~450℃,应变速率为0.01~10 s~(-1),研究其热压缩流变应力行为.结果表明:流变应力开始随应变的增加而增大,出现峰值后逐渐趋于平稳;应力峰值随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的双曲正弦关系来描述合金热流变行为,其变形激活能为224.3826 kJ/mol.  相似文献   

20.
研究应变对β固溶处理后Ti-55531合金室温压缩变形机制的影响,相变点以上固溶水淬处理后得到全β组织,使用Gleeble3800热模拟试验机和6.3MN锻造模拟试验机完成室温压缩。运用OM, XRD和TEM对不同应变后的组织进行观察,结果表明:应变速率为0.0005 s~(-1),工程应变量为30%室温压缩真应力-真应变有明显的应变硬化阶段,应变速率为0.1 s~(-1),工程应变量为30%室温压缩真应力-真应变曲线无明显的应变硬化阶段,而出现了流变软化现象;室温压缩真应力-真应变曲线均无双屈服现象,不同应变速率条件下,相同应变量的变形组织特征差异较小,室温压缩变形机制以滑移为主,随着应变量的增大,位错密度逐渐增大,出现了位错塞积、位错缠结和剪切;工程应变量为30%出现了应变诱发α"马氏体转变;应变速率为10 s~(-1),工程应变量为50%和60%也出现了应变诱发α"马氏体转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号