首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
据文献报道,Nb纳米线增强NiTi记忆合金复合材料可展现超常的准线性超弹特性。为揭示该准线性超弹特性的产生和变形机制,通过真空感应熔炼、锻造、拔丝方法原位合成了NiTi-Nb复合材料丝材。TEM显微分析表明,Nb纳米线沿丝材轴向平行分布在纳米晶NiTi基体中。该材料在经历一次9%的预变形后会展现准线性超弹特性,其屈服强度达1.7 GPa,表观Young's模量约34 GPa,准线性超弹性应变接近5.5%。同步辐射高能X射线原位拉伸实验结果表明,准线性超弹性的产生与以下2点原因有关:(1)复合材料经历预变形后,Nb纳米线和NiTi基体间会产生耦合力,再次加载时,NiTi所受的耦合拉应力可以将局部区域应力诱发马氏体相变所需的外应力降低到零附近,并且耦合力越大,加载初期的相变速率越高,经过适当的预变形后,加载初始就能够持续发生高速率相变;(2) NiTi中耦合拉应力呈梯度分布,使相变应力-应变曲线不再是常见的“平台型”,转变为“硬化型”斜线。  相似文献   

2.
采用数字图像相关(DIC)方法原位测定了NiTi形状记忆合金薄带在单轴拉伸下变形时的应变场,采用红外热成像法(IR)原位测定其温度场,并定量获得了单轴拉伸加载-卸载条件下马氏体带局部化的全场应变与温度信息.同时研究了相变带的形核、扩展、合并、缩减、分裂及消失等过程中相变带内和带外应变场、温度场、厚度场及折曲角场的变化规律.结果表明,相变应变主要集中在相变带内部,而带外应变量很小,温度场和厚度场变化主要集中在相界面移动的前端,折曲角场变化集中在相变前端且带内分布不均匀.  相似文献   

3.
采用等离子烧结法(SPS)制备不同含量(1%4%,质量分数)纳米SiO2增强NiTi基复合材料,研究SiO2添加对NiTi-SiO2复合材料的显微组织、相变点、力学性能及断裂特征的影响。结果表明,所制备的NiTi-SiO2复合材料其显微组织主要由B2-NiTi相、B19’-NiTi相、Ni3Ti相、Ti2Ni相以及SiO2相组成,SiO2颗粒均匀弥散地分布在NiTi基体中。随SiO2加入量的增加,合金的相变特征温度,Mf、As和Af下降,但SiO2的添加量对Ms温度影响不大。SiO2颗粒对NiTi合金的强化效果明显,随颗粒加入量增加,其断裂方式由韧性断裂转变为脆性断裂。在6%变形范围内,添加SiO2颗粒的复合材料具有更高的回复率,表现出更好的超弹性。  相似文献   

4.
《塑性工程学报》2020,(2):154-164
针对单向石墨纤维增强铝合金复合材料(CF/Al复合材料),采用细观力学数值模拟与准静态压缩试验相结合的方法研究了其轴向压缩渐进损伤与断裂力学行为,并分析了纤维体积分数对CF/Al复合材料压缩力学性能的影响。结果表明,基于纤维正六边形排布RVE建立的细观力学有限元模型对CF/Al复合材料轴向准静态压缩变形力学行为的计算结果与实验结果吻合良好。复合材料轴向压缩时首先在界面处发生损伤,界面损伤的累积随后引起局部界面失效并诱发基体合金的损伤,变形后期纤维发生失效并导致复合材料产生轴向45°压缩破坏,压缩断口呈现出界面脱粘和局部纤维断裂共存的微观形貌,表明界面脱粘及其导致的纤维断裂是诱发复合材料轴向压缩失效的主要机理。轴向压缩载荷作用下基体合金塑性变形损伤后不易发生失效,纤维性能是决定复合材料轴向压缩力学性能的主要因素,增加纤维体积分数有利于提高复合材料的轴向压缩弹性模量和极限强度。  相似文献   

5.
为改善记忆合金复合材料中各复合组元间的耦合作用,利于材料功能特性的展现,原位合成一种NiTi-NbTi记忆合金复合材料。通过对NiTi-NbTi复合材料进行约束态热循环的方式,使样品中回复力达到应力诱发马氏体相变的临界应力,拉伸复合材料时NiTi直接相变,进而降低复合材料整体的表观弹性模量。拉伸结果表明:对于同种NiTi-NbTi复合材料,同样在120℃的拉伸温度下,未经历约束态热循环的样品表观弹性模量为64.5GPa,而经历约束态升、降温热循环样品的表观弹性模量为55.2 GPa,弹性模量变化率为14.4%。  相似文献   

6.
通过真空感应熔炼、锻造及拔丝工艺制备了成分源于Ni48Ti46Nb3W3(原子分数)的W/NiTi(Nb)形状记忆合金原位自生复合材料,采用X射线衍射仪、扫描电镜、能谱仪及拉伸试验机研究了其微观组织结构与力学性能。结果表明:复合材料丝材中W呈横截面为片状的亚微米级纤维,且沿丝轴向均匀分布在NiTi(Nb)基体中,两组元界面结合良好;该复合材料丝材在室温下平台应力达1.2GPa,并呈现高机械阻尼性能。  相似文献   

7.
研究了TiB纤维分布的均匀性对钛基复合材料拉伸力学性能的影响。通过采用不同尺寸的钛粉与硼粉混合后进行放电等离子烧结,获得了含有TiB纤维近均匀分布和非均匀分布的钛基复合材料;并通过有限元模拟建立了纤维均匀和非均匀分布的复合材料模型。对材料的拉伸实验表明,TiB纤维的分布对钛基复合材料的杨氏模量和抗拉强度的影响较小,但纤维分布的均匀性越差,复合材料的拉伸塑性越低。并且,随着TiB纤维体积分数的增加,2类复合材料的塑性差异增大。当TiB体积分数为10%时,近均匀复合材料的伸长率为14.8%,远高于非均匀复合材料的伸长率6.2%。模拟结果证实了纤维分布的均匀性对复合材料的杨氏模量和抗拉强度影响很小,同时揭示了在纤维非均匀分布的复合材料中应力分布更不均匀,局部应力更集中,存在着更大的复合材料断裂风险。  相似文献   

8.
为使记忆合金展现宽温域高阻尼特性,采用熔炼、热锻、轧制等手段制备原位自生的NbTi-NiTi记忆合金复合材料。借助NbTi对NiTi的约束,拓宽NiTi相变温度区间,获得宽温域相变阻尼。采用LMR-1低频力学弛豫谱测试机测试样品内耗。完全相变测试结果表明:材料能在很宽的温度范围内展现高阻尼特性,并随着预变形量的增加,马氏体逆相变阻尼峰的峰温随之升高,峰宽也随之增加;预变形后,样品在第一次加热过程中阻尼峰的峰温较高,且峰较宽,而第二次加热,阻尼峰温和宽度都明显降低;测试中材料的动态模量也伴有相同的变化。不完全相变测试结果表明:内耗曲线出现双阻尼峰,而动态模量曲线出现阶梯式升高现象,且内耗曲线和动态模量曲线都展现出温度记忆效应。  相似文献   

9.
含纳米纤维和相变粒子的陶瓷复合材料具有较大的断裂韧性和较高的塑性形变行为,其组织结构以含纳米纤维的棒状复合体为基体,并在棒状复合体周围分布有少量的可产生相变的二相粒子.本文在Mori-Tanaka方法和有效自洽法的基础上提出复合材料刚度预报的随机二相胞元法.首先应用Mori-Tanaka方法计算出棒状复合体的刚度,考虑棒状复合体方位的随机性,根据复相陶瓷基体的应变均值,计算出复合材料基体的有效弹性模量和泊松比,复相陶瓷材料基体为各向同性体.最后将相变粒子看作夹杂在基体中的颗粒,计算出陶瓷复合材料的等效刚度.复相陶瓷的弹性模量随二相组元体积分数的增加而下降且略低于用混合律求解的结果,说明纳米纤维和相变粒子之间的相互作用降低了弹性模量:复相陶瓷的泊松比随二相组元体积分数的增加而下降且略高于用混合律求解的结果,说明纳米纤维和相变粒子之间的相互作用提高了泊松比.  相似文献   

10.
混杂2D-C/Al电子封装复合材料的设计与制备   总被引:6,自引:2,他引:4  
设计了混杂C/SiCp 预制型中碳化硅颗粒的尺寸及体积分数 ,并用低压浸渗技术制备了非润湿体系混杂2D C/Al电子封装复合材料。理论计算表明 :加入 0 .5%~ 2 % (体积分数 ,下同 )、尺寸 3~ 5μm的SiCp 可实现调节纤维体积分数范围为 30 %~ 60 % ,加入体积分数 1 0 %、尺寸 1 5μm的SiCp 可将纤维体积分数调小到 1 0 %。控制预制型中SiCp 的分布可获得纤维分布均匀的混杂 2D C/Al复合材料。低压浸渗法制备混杂 2D C/Al复合材料的热物理和拉伸性能优于高压法。  相似文献   

11.
对梯度结构316L不锈钢进行了不同变形量的冷轧制。利用X射线衍射和电子背散射衍射技术研究了轧制过程中钢的相组成和微观结构演变,揭示了结构演变引起的力学性能变化。结果表明,冷变形梯度结构316L不锈钢表面马氏体体积分数随变形量的增加而增加,晶粒在轧制过程中沿着轧制方向被均匀拉长并且细化,晶粒内产生大量的位错缠结、交割等亚结构。显微硬度逐渐提高并趋向于均匀化,拉伸强度得到显著提高,同时保持着良好的塑性。20%冷变形梯度结构316L不锈钢具有最优的强塑性能,其优异强度来源于轧制带来的晶粒细化、大量位错以及相变生成的马氏体相,而梯度结构协调粗细晶不均匀变形与马氏体相变的相变诱导塑性效应共同保证了其良好的塑性。  相似文献   

12.
为获得高性能NiTi基记忆合金复合材料,通过熔炼、锻造、拔丝等手段获得一种NiTi-W原位复合材料。利用SEM扫描电镜观察材料显微组织;DSC测试材料的马氏体相变行为;利用WDT II-20万能拉伸试验机测试材料的力学性能。SEM分析结果显示,拔丝加工使W纤维直径细化至几微米,甚至亚微米级别,在NiTi基体中沿拔丝方向一致排布。DSC测试结果显示,材料经不同温度退火后展现出复杂的可逆马氏体相变行为,在某些升、降温曲线上出现多个吸放热峰现象。拉伸测试结果显示,600 ℃退火样品经适当的预拉伸变形后,屈服强度会大大增加,由~200 MPa提升到~800 MPa,断裂应力超过1 GPa,断裂应变高达40%,材料展现出优秀的线性超弹性,是一种集高强度、高塑性、高线性超弹性于一身的高性能材料。  相似文献   

13.
针对真空压力浸渗制备的单向碳纤维增强铝基复合材料(CF/Al复合材料),采用细观力学数值模拟和实验相结合的手段研究了其在横向压缩载荷下的损伤演化与断裂力学行为,并分析了界面结合性能和纤维体积分数对复合材料横向压缩力学性能的影响。结果表明:基于纤维对角正方形分布RVE建立的细观力学有限元模型,可以较好地计算预测复合材料横向压缩变形力学行为。压缩变形初期界面首先发生损伤和失效现象,进而诱发界面附近基体合金的局部损伤;随压缩应变增加,界面和基体损伤逐渐发展并导致纤维的失效,复合材料横向压缩断口呈现出界面脱粘和纤维断裂共存的微观形貌。复合材料横向压缩弹性模量和极限强度随着界面强度增大而增大,而受界面刚度的影响较小;在相同界面性能条件下,复合材料横向压缩极限强度和弹性模量均随纤维体积分数的增大而减小。  相似文献   

14.
采用感应加热熔炼及通过热锻和线拉变形结合中间热处理制备了Cu-15%Cr原位复合材料,用SEM和TEM等技术对形变Cu-Cr原位复合材料的Cr纤维形成过程、立体形态进行了分析.结果表明,在变形过程中Cr树枝晶发生转动,平行于线轴方向排列;Cr纤维立体形态则为卷边的薄片状.测定了形变Cu-Cr原位复合材料的抗拉强度,分析表明,强度随变形量的增加而提高,与纤维相间距呈Hall-Patch关系.  相似文献   

15.
短纤维增强金属基复合材料拉伸应力场的有限元数值分析   总被引:9,自引:0,他引:9  
运用空间轴对称弹塑性有限元方法,研究了短纤维增强金属基复合材料拉伸应力场分布。研究表明,基体和纤维的应力分布及基体塑性行为具有明显的不均匀性,材料参数(纤维长径比,纤维体积分数,纤维根间距和基体应变硬化指数)以不同方式通过影响应力传递基体约束变形和基体应变硬化进而影响应力场分布。  相似文献   

16.
朱祎国  张杨  赵聃 《金属学报》2013,(1):123-128
假设NiTi单晶在相变过程中具有层状的微观结构及理想的界面连续条件,推导出各相微观量与宏观量之间的关系,及相变驱动力的表达式,建立了单晶相变的控制方程,从而得到单晶的本构模型.以此为基础,利用Tayloy假设,建立了NiTi多晶的本构模型.通过控制应变进行加载,数值模拟了恒温条件下具有{111}织构的NiTi合金的力学响应,得到的应力-应变曲线与实验结果吻合较好.利用模拟结果讨论了拉伸与压缩的不对称性、软化和温度对NiTi合金变形的影响.  相似文献   

17.
主要研究了51.1Zr-40.2Ti-4.5Al-4.2V合金室温拉伸变形过程中的组织演变和力学性能变化。研究表明,室温拉伸变形过程中合金发生从β相到α″相的转变,α″相的体积分数随拉伸速率的增加而减小。应力诱发α″马氏体相变对合金的力学行为有明显的影响。在拉伸速率为0.3 mm/min时,触发应力(TS),极限拉伸强度(UTS),延伸率(EL)和弹性模量(EM)分别为770.06 MPa,1168.60 MPa,14.96%和64 GPa。TS和EM随拉伸速率的增加而增加,而UTS和EL则降低。加工硬化率与真应变的关系曲线呈现出3个不同的阶段,应力诱发α″马氏体相变主要影响加工硬化率曲线的第2阶段。在给定应变条件下,第2阶段的加工硬化率随拉伸速率的增加逐渐降低。拉伸速率为0.3 mm/min时,合金的断口形貌是由大量韧窝以及少量准解理面组成的,合金发生塑性断裂,随着拉伸速率的增加,合金断裂方式由塑性断裂变为脆性断裂。这主要与应力诱发α″马氏体相含量随拉伸速率的增加而降低有关。  相似文献   

18.
将纯钛粉和碳化硼粉按一定比例混合均匀后,通过反应热压方法原位合成制备了增强体TiB晶须和TiC颗粒钛基复合材料,增强体体积分数为5%.利用同样方法制备了纯钛材料.热挤压后,利用X射线衍射仪分析研究了反应自生增强体组成,通过透射电镜和扫描电镜,研究了钛基复合材料的微观组织变化规律及钛基复合材料在室温和高温下拉伸断口形貌特征.研究结果表明,纯钛和B4C在1 200℃发生化学反应,原位合成产生2种不同形状的增强体,即短纤维状TiB晶须和等轴状的TiC颗粒.原位增强体与钛基体具有良好的界面结合,没有明显的界面反应.室温拉伸2种材料均呈脆性断裂.高温拉伸时,纯钛拉伸断口韧窝比较大,尺寸较深.复合材料韧窝尺寸较小.  相似文献   

19.
有限元模拟SiC增强Al基复合材料的力学行为   总被引:1,自引:0,他引:1  
采用有限元方法和轴对称单胞模型模拟了增强体(SiC)形状、体积分数以及不同基体类型对铝基复合材料力学行为的影响。模拟结果表明:增强体的加入会阻碍基体的塑性流变,使基体内发生非均匀变形,在增强体尖角处出现应力集中;椭圆柱形增强体对基体塑性变形的阻力最大,传递载荷的能力最强,因此强化效果最好。在一定范围内,随着增强体体积分数的增加,基体与增强体之间的比表面积增大,有利于载荷的传递;增强体体积分数的增加导致颗粒间距减小,几何必须位错自由运动的路径减少,复合材料的强度也随之增加。此外,不同类型基体自身的塑性流变能力不同,Al-Zn-Mg基体强度最高,在拉伸变形过程中,受到增强体的阻碍作用最大,会有更多的载荷从基体传递到增强体,以Al-Zn-Mg为基体的复合材料的强度最高。  相似文献   

20.
以不同体积分数的Ti B+La_2O_3原位增强钛基复合材料为研究对象,在室温下对该材料进行SEM原位拉伸实验,通过对裂纹尖端的组织变化以及裂纹扩展路径的原位观察,分别研究了增强体对材料拉伸强度和拉伸断裂行为的影响。结果表明:增加增强体的体积分数可以提高增强体的承载作用并细化基体晶粒,从而提高颗粒增强Ti基复合材料的强度。材料的断裂行为表现为增强体断裂后微裂纹的萌生、扩展及其和滑移带的汇合。高含量的增强体可增加微裂纹的数量,使得其在萌生、扩展后更易与邻近微裂纹或滑移带相贯通,加快宏观裂纹的形成,从而导致了材料塑性的下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号