首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在2150热连轧生产线上对10.03 mm厚电阻焊石油套管用高强钢进行了研制。成分设计采用中低碳加少量Cr元素,提高淬透性;采用纯净钢冶炼、170 mm板坯连铸和轻压下工艺进行了试制。最终实物的夹杂物水平低于1.0级。热轧态卷板的屈服强度为380~450 MPa,抗拉强度为600~630 MPa;制管后钢管屈服强度升高较大,屈服强度达到480~520 MPa,抗拉强度达到600~650 MPa;钢管高温淬火后400~430℃回火,屈服强度达到850~880 MPa,抗拉强度950~980 MPa,满足API SPEC 5CT标准中规定的P110钢级;钢管高温淬火后550~590℃回火,屈服强度达到600~620 MPa,抗拉强度达到680~700 MPa,满足API SPEC 5CT标准中规定的L80钢级。  相似文献   

2.
《模具工业》2017,(9):63-67
针对GH738合金锻件室温拉伸屈服强度不合格问题,采用热处理试验分析方法,研究了固溶温度对GH738合金环锻件组织性能的影响。研究结果表明,在1 000℃~1 040℃,随着固溶温度逐渐升高,GH738环锻件室温拉伸屈服强度逐渐提高,其抗拉强度、延伸率和断面收缩率变化不大,提高固溶温度对GH738合金环锻件的晶粒度影响不大。  相似文献   

3.
研究了退火温度对等通道转角挤压(ECAP)Fe17.80Mn4.73Si7.80Cr4.12N i合金力学性能及显微组织的影响。结果表明,等通道挤压工艺能显著提高合金的屈服强度和抗拉强度,两道次挤压后合金的屈服强度达到880 MPa,比固溶态高660 MPa。退火温度从300℃升高到600℃时,合金屈服强度和抗拉强度降低,伸长率升高。挤压后经700℃×30 m in退火后,材料的伸长率达到40%,屈服强度达到426 MPa,再结晶基本完成,晶粒尺寸仅为0.3~2.5μm。细晶强化是该合金强度和伸长率提高的主要原因。  相似文献   

4.
本工作研究了一种自主研发的第三代粉末高温合金WZ-A3不同工艺状态的显微组织特征以及热处理后合金的高温拉伸、蠕变以及疲劳性能。该合金采用热等静压(HIP)+热挤压(HEX)+锻造(HF)+热处理(HT)工艺加以制备。结果表明:HIP态合金晶粒度等级为ASTM8~9级,晶界存在粗大γ'相,晶内存在相对细小的γ'相;经挤压+锻造后,合金晶粒度等级可达ASTM13~14级,晶内γ'相细化,但晶界处的γ'相数量明显增多;热处理后合金晶界处大块状的γ'相数量明显减少,晶内γ'相平均尺寸由HIP态的400nm细化至热处理态的200nm。过固溶+时效热处理后的合金700℃抗拉强度和屈服强度分别达1360MPa和1029MPa,延伸率和断面收缩率分别为23.5%和17%;在800℃/330MPa条件下蠕变量达0.2%时所用时长为229小时;700℃/0~0.8%/0.33Hz条件下的疲劳寿命为24500循环周次。蠕变性能和疲劳性能与LSHR和ME3等三代镍基粉末高温合金相当,但700℃拉伸强度较LSHR合金高近50MPa,延伸率为其3倍,屈服强度稍有降低。  相似文献   

5.
在实验室试制600 MPa级低碳Si-Mn含钒冷轧双相钢,研究了连续退火后试验钢的组织和力学性能。结果表明:经800℃保温,300℃过时效处理,可以获得综合力学性能优良的冷轧双相钢,其屈服强度为358 MPa,抗拉强度为637 MPa,伸长率达到了23.7%,BH值为55 MPa;钢中V主要以析出物和在铁素体中以固溶态两种状态存在,主要起到析出强化和细化晶粒的作用。  相似文献   

6.
《铸造技术》2016,(12):2557-2562
采用铝热熔化法制备了纳米晶/微米晶复相316L不锈钢,研究了铸态和600~1 000℃退火态下钢的组织和力学性能特征。结果表明:随退火温度升高,纳米晶和微米晶的平均晶粒尺寸逐渐增大,微米晶的体积分数逐渐提高。1 000℃退火后组织中出现了FeNiCrAl金属间化合物相。600℃退火后抗拉强度最大,约574 MPa,伸长率为6.5%。800℃退火后,拉伸屈服强度和抗拉强度分别降至240 MPa和515 MPa,伸长率升高至18.2%。1 000℃退火后拉伸屈服强度和抗拉强度进一步降低,但塑性提高,伸长率达到41.2%。  相似文献   

7.
《钢管》2021,(1)
正[发布日期:2021-01-21] 2020年12月,浙江德威不锈钢管业股份有限公司(简称德威不锈钢)成功交付UNS N08811大直径单直缝高温镍基合金焊管,交付产品规格为椎1 067 mm伊25.4 mm和椎914 mm伊22.23 mm,产品抗拉强度Rm逸548 MPa,屈服强度Rp0.2逸200 MPa,伸长率A50逸50%,晶粒度等级为4级,满足项目技术规范要求值(要求抗拉强度Rm逸450 MPa,屈服强度Rp0.2逸170 MPa,伸长率A50逸30%,平均晶粒度不大于5级)。交付产品通过单条纵缝焊接成型,采用超宽幅板材加工,板材宽度达3.2 m以上。UNS N08811高温镍基合金中的Si、Al、Ti等元素虽然提高了材料的热强性,但也会不同程度地降低其焊接性,由于焊缝中Ni含量高,容易与S、P、Si等形成低熔点共晶,若焊接工艺不当,在焊接应力的作用下,  相似文献   

8.
研究了950~1 200℃固溶处理对UNS N06625合金冷轧管组织和力学性能的影响。结果表明,当固溶温度从950℃提高至1 200℃,屈服强度和抗拉强度分别从480 MPa和900 MPa降至380 MPa和810 MPa,伸长率由45%提高至57.5%;晶粒度级长大至4.0~7.0级;1 100℃以上固溶处理时,合金中的碳化物基本溶解;晶粒尺寸和析出相数量是影响UNS N06625合金强度的主要因素。  相似文献   

9.
通过对镍基合金GH80A进行大变形异步与同步轧制,制备了纳米组织材料,研究了退火处理对纳米组织GH80A材料的组织与力学性能的影响。结果表明,大变形轧制后的材料的晶粒细化至约50 nm,其抗拉强度从646 MPa提升至1787 MPa,在700℃下进行退火处理后,抗拉强度可以达到2111 MPa;退火温度对取向影响不大。所制备的超细晶材料具有良好的组织热稳定性,在700℃下退火,晶粒尺寸约150 nm,在800℃下退火1 h,晶粒尺寸仍然能够保持在250 nm以下。分析认为,超细晶镍基GH80A材料的组织稳定性与强度的显著提高与γ'相的析出有直接关系。  相似文献   

10.
利用VN微合金化工艺,以低成本和高性能为基本原则,通过对钢板化学成分、冶炼和连铸工艺、轧制及冷却工艺的设计,试制出60 mm以上规格600 MPa级特厚高强结构钢板。对试制钢板的力学性能和金相组织进行了研究。结果表明,试制钢板的屈服强度460~515 MPa,抗拉强度600~650 MPa,-20℃低温冲击功140~200J,冷弯性能良好。钢板具有较高的强度和良好的低温冲击韧性,可满足Q500D的标准要求。  相似文献   

11.
采用光学显微镜、电子万能试验机和晶间腐蚀试验等研究了终锻温度对核电用316L奥氏体不锈钢显微组织、力学性能及耐晶间腐蚀性能的影响。结果表明:当始锻温度为940℃,终锻温度为830℃时,试验钢的晶粒度为4.5~5级,比终锻温度860℃和890℃的样品分别高0.5级和1级。终锻温度为830℃的样品在室温下抗拉强度达到574 MPa,360℃高温下抗拉强度为446 MPa,室温下冲击吸收能量达到388 J。随着终锻温度的降低,试验钢的抗拉强度、屈服强度及冲击吸收能量升高,室温及高温伸长率变化不显著。终锻温度在830~890℃范围内,试验钢的耐晶间腐蚀性能良好,终锻温度为860℃的试验钢耐晶间腐蚀性能最佳,再活化率最小。  相似文献   

12.
为了降低Ti60钛合金整体叶盘锻件的探伤杂波,对锻坯用原材料Ti60钛合金进行改锻,并采用等温锻造成形方法对Ti60钛合金整体叶盘锻件进行了试制验证。试制结果表明:改锻可以提高中间坯的组织均匀性,降低杂波水平。锻坯在变形温度为(T_(β)-40)℃、变形速率为1.5~0.2 mm·s^(-1)、等效应变为0.3~1.2的条件控制下,获得了理想的双态组织、优异的高温力学性能。在变形温度为600℃、应力为310 MPa的条件下,试样持久时间可达388 h;在600℃的高温下保温20 min后,拉伸试样的抗拉强度为677 MPa、屈服强度为557 MPa、伸长率为15%、断面收缩率为40%,并按HB/Z 37—1982水浸探伤要求进行测试,杂波水平为Φ0.8-12.0 dB,满足某型号Ti60钛合金整体叶盘模锻件验收标准要求。  相似文献   

13.
王莎  杨亚社  南莉  杨永福 《热加工工艺》2012,41(12):184-186
对N04400合金钻孔管坯进行冷轧加工成管材,并进行了不同温度保温90min的真空退火处理,研究了加工态管材的组织与性能及退火温度对管材显微组织和力学性能的影响。结果表明,加工态时管材的显微组织沿轧制方向被拉长,抗拉强度为740MPa,屈服强度为695MPa,伸长率6.5%,屈强比为0.94;经600~650℃退火后,晶界更加清晰,显微组织仍为拉长的纤维状,强度较轧制态略有下降,伸长率稍有上升;700℃退火后,变形晶粒开始发生再结晶,抗拉和屈服强度急速下降,伸长率大幅上升;750℃退火后,组织发生了完全再结晶,力学性能变化缓慢。  相似文献   

14.
研究了Si-Mn-Cr-Ni系低合金高强钢锻件在不同热处理工艺下的显微组织和力学性能。结果表明,试验钢经820℃正火后,锻件组织细化效果较好且分布均匀,再经920℃淬火和280℃低温回火后,其硬度为43.9 HRC,冲击吸收能量KV2为82.6 J,抗拉强度为1513.35 MPa,屈服强度为1221.92 MPa,伸长率为14.65%,此时组织为回火板条马氏体且晶粒尺寸细小,晶粒度为8.3级,达到最佳的强韧性匹配,试验钢的综合力学性能最优。  相似文献   

15.
以新一代高炉炉壳用钢的开发为背景,采用低Mo或无Mo的成分设计,研究了Mo对热轧态、回火态和正火态低碳钢组织和高温拉伸性能的影响.结果表明,试验钢热轧态组织均为铁素体+珠光体+M-A岛,其屈服强度可保持至400℃而不明显降低;回火后,岛状马氏体组织消失,试验钢屈服强度在室温~600 ℃范围内随拉伸温度升高而线性下降.Mo的添加提高了回火时第二相的析出温度,并使正火态组织中含有大量M-A岛.含Mo试验钢在回火后具有更高的室温和高温强度,经640℃回火后,其常温屈服和抗拉强度依次为540 MPa和625 MPa,屈强比为0.86,600℃屈服强度保持率为55%.  相似文献   

16.
通过镍、钒和铌的微合金化以及采用控制轧制、正火处理等工艺方法,鞍钢成功开发出了80 mm厚、5 000 mm宽的SA-516Gr. 70钢板,并对钢板进行了力学性能检测和显微组织分析。结果表明,试制的特宽特厚SA-516Gr. 70钢板的显微组织为均匀细小的块状铁素体和条带状珠光体,晶粒度为9级,具有良好的强韧性。在经过605℃保温15 h的模拟焊后热处理后,钢板的室温抗拉强度为501 MPa,屈服强度为310 MPa,断后伸长率为40%,0℃冲击吸收能量大于200 J,力学性能达到了技术要求。  相似文献   

17.
采用金相显微镜对国内和德国不同状态P92钢的组织及晶粒度进行分析。通过机械式蠕变持久实验和常温拉伸实验对不同状态的P92钢进行持久强度和室温强度的研究。探究了晶粒度对不同状态P92钢持久强度和室温强度的影响。结果表明:国产P92钢使用状态下的晶粒度为7.0级90%、4.0级10%,对应的持久强度及室温强度分别为123.67、695 MPa;而德国P92钢使用状态下的晶粒度为1.0级,对应的持久强度及室温强度分别为131.07、710 MPa;经热处理后,国内和德国P92钢的晶粒度是8.0级,对应的持久强度分别是128.17、128.49 MPa,对应的室温抗拉强度分别是788、769 MPa。  相似文献   

18.
采用金属型铸造制备了Mg_(97)Ni_1Gd_1Nd_1(摩尔分数)合金,并采用光学显微镜、X射线衍射仪(XRD)、扫描电镜(SEM)和力学试验等研究了合金的铸态组织和力学性能。结果表明,Mg_(97)Ni_1Gd_1Nd_1合金铸态组织主要由树枝状α-Mg和分布于枝晶间的长周期结构相组成;合金室温和300℃时的屈服强度、抗拉强度和伸长率分别为139 MPa、163 MPa、1.7%和131 MPa、192 MPa、6.7%,而300℃抗拉强度优于室温,呈现力学性能温度反常现象;合金室温压缩屈服强度、抗压强度和压缩塑性分别为159 MPa、364 MPa和14.9%,其压缩屈服强度高于拉伸强度,表现出室温屈服拉压不对称性。  相似文献   

19.
研究分析了激光选区熔化(SLM)成形GH4099合金的显微组织、裂纹形貌及裂纹形成的原因,优化了成形工艺,并对比分析了SLM制备的固溶时效态试样和冷轧板试样的拉伸性能.结果 表明:SLM试样的显微组织呈现为生长取向不一致的细小晶粒,晶粒尺寸为50~ 100 μm;合金中低熔点元素在晶界处偏析并富集产生低熔点γ'相,在温度梯度大且存在较大热应力的成形过程中易产生孔洞和裂纹,裂纹呈短线状和针状,并沿晶界扩展,呈现明显的高温开裂特征.随着激光功率的增加,试样的孔隙率呈现先降低后增加的趋势,当激光功率为300 W、扫描速度为1060 mm/s、扫描间距为0.1mm、层厚为0.04 mm时,合金的显微组织最好,孔隙率最小达0.008%.固溶时效态SLM试样的室温抗拉强度可达998 MPa以上,700℃高温抗拉强度在880 MPa以上,900℃高温抗拉强度在336 MPa以上,室温和700℃高温抗拉强度优于冷轧板试样,900℃高温抗拉强度与冷轧板试样持平,但室温和900℃高温塑性、高温屈服强度较冷轧板试样略低.  相似文献   

20.
介绍了700℃超超临界机组汽轮机用大型镍基合金锻件制造过程中的常见问题,分析了冶炼、锻造及热处理工艺过程中的技术难点,以期获得高质量的镍基合金锻件产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号