首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钛吸氢、氘和氚的动力学同位素效应研究   总被引:4,自引:0,他引:4  
应用反应速率分析方法,在高真空金属系统上测定了钛在恒容体系和550℃~750℃范围内吸收氢、氘和氚的P-t曲线,并由此计算了各自在不同温度的速率常数,得到钛吸氢、氘和氚的表观活化能分别为(55.6±2.4)kJ/mol、(110.2±3.0)kJ/mol和(155.5±3.2)kJ/mol.钛吸氚的表观活化能最高,钛吸氢的表观活化能最低,表现出显著的动力学同位素效应,表明钛吸氚进行氚化反应较氘化和氢化更难于进行.  相似文献   

2.
采用氢气反应球磨法,将煤基微晶碳及少量Ni和Al添加到镁粉中在1MPa氢气中球磨3h制得储氢材料67Mg29C3Ni1Al.放氢测试结果表明,温度越高,放氢速度越快,放氢量越大,数据拟舍得出放氢反应为表观一级反应.根据阿伦尼乌斯方程计算得出,在300~350℃范围内,放氢反应表观活化能为(138.0±6)kJ/mol.与储氢材料70Mg30C及纯MgH2相比,微晶碳和催化剂Ni、Al缩短了储氢材料的放氢时间,加快了放氢速度,提高了放氢量,降低了表观活化能,放氢动力学性能得到了改善.  相似文献   

3.
无烟煤经碱熔-酸洗-碳化处理后制得了微晶碳,以微晶碳及肥煤作助磨剂,在氢气气氛下机械球磨金属镁3h,制得储氢材料氢化镁。在等温条件下用体积法进行放氢测试,根据放氢数据用Arrhenius方程计算出的放氢活化能为104.85kJ/mol。在变温条件下用程序升温脱附法测得材料的TPD曲线,用Kissinger方程和Sharp方程分别对材料的活化能进行计算。Kissinger方程求得的活化能为105.87kJ/mol;当升温速率为5,10和15℃/min时,Sharp方程求得的活化能分别为108.33,98.70和113.19kJ/mol。等温法和非等温法均可用于放氢活化能的计算,由于公式、原理、采用数据等方面的不同,求得的活化能有差异。  相似文献   

4.
采用热处理工艺并结合机械合金化制备Mg-Al合金,研究过渡金属氟化物(TiF_3、VF_4以及ZrF_4)的添加对Mg-Al合金储氢性能的影响。研究发现,所有合金均主要由Mg_(17)Al_(12)相组成,Mg_(17)Al_(12)的氢化产物为MgH_2和Al,在过渡金属氟化物的催化作用下,Mg-Al合金的综合储氢性能得到明显提高。Mg-Al合金的初始吸/放氢温度约为180和300℃,添加TiF_3、VF_4以及ZrF_4后,合金的初始吸氢温度分别下降了80,30和30℃,初始放氢温度则分别下降了80,80和25℃,其中TiF_3显示出了良好的催化性能,尤其是在Mg-Al合金添加TiF_3后,Mg-Al合金氢化物的吸氢反应焓和脱氢反应焓从59.9和84.2 kJ/mol分别下降到了到了45.8和55.4 kJ/mol。  相似文献   

5.
碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究   总被引:1,自引:0,他引:1  
以改性无烟煤为助磨剂,在氢气气氛下球磨制备了具有纳米结构的镁铝合金储氢材料,通过SEM,XRD,TPD等手段对比研究了球磨吸氢材料及静态再吸氢材料的晶相结构及放氢动力学性能.结果表明:改性无烟煤具有良好的助磨作用,经5.5h球磨,材料平均粒度可达74nm;镁铝合金经反应球磨后,其中的Mg转化成了β-MgH2和γ-MgH2,放氢峰温低于300℃;静态再吸氢后,MgH2全部以β-MgH2存在,且晶体粒度增长60%,Mg17Al12分解为单质Mg和Al,其中单质Al使储氢材料放氢活化能降低,用Kissinger方程计算出球磨储氢和再吸氢材料的放氢一级表观活化能分别为107.3kJ/mol和67.1kJ/mol.  相似文献   

6.
以Mg、烟煤和碳化无烟煤为原料,经H2反应球磨、热处理制备了烟煤粘结的纳米镁基储氢材料,研究了储氢材料结构及吸放氢性能,并计算了材料的吸氢动力学参数。结果表明,在600℃热处理时材料中的Mg容易与煤中的C发生反应生成Mg2C3;添加15%(质量分数)烟煤,经500℃热处理能有效粘结纳米Mg颗粒,且未见Mg2C3生成。储氢材料的吸氢速率随温度升高而增大,在2MPa H2下吸氢量在350℃达到最大值,约3.77%(质量分数),在400℃时吸氢量略有下降。根据Arrhenius公式得出储氢材料在300~350℃下吸氢的一级反应表观活化能为56.6kJ/mol H2。用TPD测定了储氢材料的放氢温度,表明材料在250℃开始放氢,388℃时达到放氢高峰。储氢材料中的C可结合少量H,该类H在加热时会以CH4等烃的形式释放出来。  相似文献   

7.
在不同的准等温和变化的压力条件下,对LaNi4.7Al0.3贮氢合金的氢化/脱氢动力学进行了PCT模型的模拟研究。一个理想的合金氢化/脱氢反应动力学方程是设计反应过程单元的重要工具。根据多项式PCT方程与形核成长模型得到适合于LaNi4.7Al0.3贮氢合金氢化/脱氢动力学的模型方程。该合金PCT平台区斜率较大,将平台区按氢化/脱氢量划分为3个区域,利用Vant’Hoff方程计算出各区域反应焓变和熵变。模拟研究结果表明,该模型方程中活化能Ea=32kJ/mol,Avrami指数n的取值范围为1.1~1.33时,计算曲线与实验结果能较好地吻合,氢化/脱氢过程由反应初期的一维形核长大控制向后期的低维扩散控制转变。  相似文献   

8.
应用反应速率分析方法,测定了氘化钛和表面有阳极氧化层的氘化钛在恒容体系和600~800℃范围内的热解吸反应速率常数,得到氘化钛和阳极氧化的氘化钛热解吸氘的活化能分别为(24.9±1.0)kJ/mol和(38.5±1.2)kJ/mol;氘化钛表面氧化层越厚,表观活化能越大;实验表明氘化钛表面阳极氧化层具有阻氘性能.  相似文献   

9.
应用机械合金化技术制备LiAlH_4/4MgH_2以及LiAlH_4/4MgH_2+5%M(质量分数,M=NbSi_2,Ni_2Si,Nb_2O_5)复合材料,并对其组织、热性质以及吸放氢动力学进行了表征。结果表明,添加NbSi_2、Ni_2Si和Nb_2O_5能提高复合材料的吸放氢动力学性能和改善热力学性质。添加NbSi_2、Ni_2Si和Nb_2O_5使复合材料的氢化反应低温段的峰值温度分别降低了19 K、15 K和23 K,使复合物放氢反应的表观活化能从145.71 k J/mol分别降低到142.12 k J/mol和115.12 k J/mol。  相似文献   

10.
以Mg、烟煤和碳化无烟煤为原料,经H2反应球磨、热处理制备了烟煤粘结的纳米镁基储氢材料,研究了储氢材料结构及吸放氢性能,并计算了材料的吸氢动力学参数。结果表明,在600℃热处理时材料中的Mg容易与煤中的C发生反应生成Mg2C3;添加15%(质量分数)烟煤、经500℃热处理能有效粘结纳米Mg颗粒,且未见Mg2C3生成。储氢材料的吸氢速率随温度升高而增大,在2MPaH2下吸氢量在350℃达到最大值,约3.77%(质量分数),在400℃时吸氢量略有下降。根据Arrhenius公式,得出储氢材料在300~350℃下吸氢的一级反应表观活化能为56.6kJ/molH2。用TPD测定了储氢材料的放氢温度,表明材料在250℃开始放氢,388℃时达到放氢高峰。储氢材料中的C可结合少量H,该类H在加热时会以CH4等烃的形式释放出来。  相似文献   

11.
紫外光照射下光敏引发丙烯酰胺聚合动力学   总被引:3,自引:0,他引:3  
以2,2’-偶氮(2-脒基丙烷)二氢氯化物(V-50)为光敏引发剂,丙烯酰胺为原料,采用毛细管膨胀计法,研究了丙烯酰胺水溶液聚合动力学规律;在紫外光照射下探讨了单体浓度、光敏引发剂浓度、反应温度对光敏引发丙烯酰胺(AM)聚合反应速率的影响。结果表明,聚合反应的表观活化能为21.21 kJ/mol,反应表观速率常数表达式为k=2.688×103exp(-21.21/RT),光敏引发AM聚合速率的动力学方程式表示为Rp=k[AM]1.088[I]0.4989,通过实验验证了该动力学关系式。  相似文献   

12.
苯并噁嗪-酚醛-环氧豆油三元聚合体系的热分解行为研究   总被引:1,自引:1,他引:0  
通过热重分析法研究了苯并噁嗪-酚醛-环氧豆油(BA-NP-ESO)三元聚合体系在不同升温速率下的热分解动力学。利用Kissinger-Akahira-Sunose(KAS)法和Flynn-Wall-Ozawa(FWO)法求取了三元聚合体系热分解过程的表观活化能,当分解率在0.3~0.9范围内时,反应属于同一机理,两种方法求得的活化能分别为241.1kJ/mol和253.7kJ/mol。运用Coats-Redfern法和Achar法对非等温动力学数据进行分析,得到热分解反应的机理函数,其热分解反应为四级反应,符合随机成核和随后生长机理,两种方法求得的表观活化能分别为250.21kJ/mol和266.96kJ/mol,与KAS和FWO法的结果较为一致。  相似文献   

13.
采用热分析技术(TG/DTG)研究了乙烯-四氟乙烯共聚物(ETFE)的热降解性能,利用Friedman法和Flynn-Wall-Ozawa法对其数据进行了分析,计算出了不同条件下的活化能和反应级数n。结果表明:整个ETFE树脂的降解温度范围大约在400~525℃内,Friedman法模拟得到的平均活化能为226.41kJ/mol,而Flynn-Wall-Ozawa法模拟得到的平均活化能为278.90kJ/mol,利用Friedman法求得在一定升温速率下的平均活化能为203.58kJ/mol,平均反应级数n为1.09。  相似文献   

14.
以HDEHP为载体的大块液膜迁移铕离子动力学研究   总被引:2,自引:0,他引:2  
以二 (2 -乙基己基 )磷酸 (HDEHP)为载体 ,考察了搅拌速度、温度、石蜡及表面活性剂对大块液膜迁移铕离子的影响 ,获得了各种实验条件下的表观反应速率常数 ,萃取和反萃取的表观反应活化能分别为 1 0 .7kJ/mol和 2 9.2kJ/mol.结果表明 ,萃取过程扩散为控速步骤 ,反萃取过程化学反应亦为控速步骤 ,Eu(Ⅲ )离子的跨膜迁移过程可以以两个串联的准一级不可逆过程进行描述 .  相似文献   

15.
煤沥青粉填充氯醋/聚氨酯复合材料的热特性   总被引:1,自引:0,他引:1  
采用差示扫描量热分析(DSC)、热重分析(TG)研究了煤沥青粉填充氯醋/聚氨酯复合材料的玻璃化转变温度、粘流温度及热分解特性,在氮气氛下以不同升温速率讨论并计算得热解动力学相关参数及热解速率经验方程式。结果表明,煤沥青粉填充氯醋/聚氨酯弹性体复合材料的玻璃化温度为-46℃,粘流温度为145℃,其耐热特性与氯醋/聚氨酯材料基本一致。该复合材料热降解分两阶段,活化能E为(97.9±1.1)kJ/mol(、229.8±3.9)kJ/mol,反应级数n为1.2和0.9。  相似文献   

16.
将氨气等离子体法制备的50nm左右的Mg3N2纳米颗粒与氨气反应,成功合成出大小约为80nm,球壳厚度约为10nm的Mg(NH2)2纳米空心球。利用Mg(NH2)2纳米空心球制备的Mg(NH2)2+2LiH储氢体系,比普通Mg(NH2)2+2LiH具有更低的放氢温度,放氢活化能从149.1kJ/mol降低到了117.6kJ/mol。对该体系添加纳米级的Ni作为催化剂,放氢活化能进一步降低为108.0kJ/mol。反应后生成物颗粒大小取决于反应前Mg(NH2)2颗粒的大小。通过对放氢性能的比较,讨论了影响Mg(NH2)2+2LiH体系放氢性质的因素和决速步骤。  相似文献   

17.
采用中频感应炉冶炼了添加少量Y和Cu的Mg 2Ni型储氢合金,利用X射线衍射仪、扫描电子显微镜、能谱分析仪、透射电子显微镜对合金不同状态下的物相结构与显微组织进行测试,借助基于Sieverts法的吸放氢设备和差示扫描量热仪测试合金的放氢性能,研究合金在等温与连续加热条件下的放氢过程和放氢活化能,并讨论相应的放氢机制。结果表明:铸态合金呈片层状组织,其主相为Mg 2Ni,YMgNi 4,并含有少量Mg;在前6次放氢中,每次达到90%最大放氢量所用时间分别为446,418,360,354,342 s和336 s;对等温放氢曲线拟合的结果表明:合金脱氢过程是以随机成核和随后生长的机制完成;等温放氢时的活化能E a=67.6 kJ/mol,而连续升温时的放氢活化能E a=69.5 kJ/mol;同时发现,505 K和512 K为Mg 2NiH 4相的晶型转变点,且Mg 2NiH 4比MgH 2先行放氢。  相似文献   

18.
采用非等温DSC法探讨了酚醛树脂与双马来酰亚胺体系的固化反应,在30 ℃~400 ℃范围内以不同升温速率(5 ℃/min、10 ℃/min、15 ℃/min、20 ℃/min)进行动态固化行为分析.应用Kissinger、Crane和Ozawa法求得了固化反应的表观活化能、固化反应级数、凝胶温度和固化温度等动力学参数.结果表明,固化体系的平均表观活化能为109 kJ/mol,反应级数为0.94,凝胶温度Tgel为79.68 ℃,固化温度Tcure为121.93 ℃,表观活化能E是固化度α的增函数.  相似文献   

19.
SnLi引发苯乙烯/异戊二烯/丁二烯聚合动力学   总被引:2,自引:0,他引:2  
以含锡有机锂(SnLi)为引发剂,四氢呋喃(THF)为结构调节剂,环己烷为溶剂,对苯乙烯(St)、异戊二烯(Ip)和丁二烯(Bd)进行阴离子聚合,合成了锡官能化St-Ip-Bd三元共聚物(SIBR),研究了不同THF/SnLi(摩尔比)和引发温度下的聚合动力学。结果表明,在三元共聚合中,三种单体的反应速率与其各自浓度均符合一级动力学关系;随着引发温度的升高和THF/SnLi的增大,各单体的反应速率常数逐渐增大;当THF/SnLi为30时,单体BdI、p、St的表观增长反应活化能分别为68.486 kJ/mol,87.984 kJ/mol,76.351 kJ/mol,链增长频率因子分别为2.86×1010min-1,1.47×1013min-1,3.40×1011min-1。  相似文献   

20.
通过热重分析仪研究了不同氯硫含量的氯磺化聚乙烯(CSM)在不同升温速率下的热分解行为。采用Ozawa及Kissinger方程研究了氯磺化聚乙烯的降解动力学,研究发现CSM的热降解过程包括两个主要失重平台,而且氯磺化聚乙烯的热分解反应不是一级反应。Ozawa方程计算的活化能随着产物中氯硫含量的增加从304.661kJ/mol下降到292.573kJ/mol。Kissinger方程计算的活化能分别为282.785kJ/mol和274.176kJ/mol。ln(β/Tm2)对1/Tm作图得一直线,证明氯磺化聚乙烯的热分解符合无规分解模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号