首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to confirm the reliability of particle size measurement technique and to prepare standard reference particles for calibrating particle size measurement devices, experimental and theoretical studies have been conducted through particle size measurement of silica particles having a size range of 0.1–1 μm.A new theoretical equation to calculate fundamental uncertainty region in the case that the maximum and/or the minimum particle size is known, is derived based on a log-normal distribution truncated by the maximum and/or the minimum. Fundamental uncertainty regions calculated based on these truncated size distributions are compared with that calculated based on the perfect log-normal distribution. The relationship between the parameter u to determine the reliability of size distribution and the truncate-parameter g is obtained to get 95% reliability of the measurement. Value of the parameter u is fairly reduced as the truncate-parameter g becomes smaller.Numerical simulation of uncertainty region agreed with the results calculated by the new theoretical equation. Calculations on the silica particles having a size range of 0.1–1 μm have been conducted showing that the uncertainty region based on the known maximum size is slightly smaller compared to that given in the previous paper.  相似文献   

2.
In this study mechanical properties of copper were enhanced by adding 1 wt.%, 2 wt.%, 3 wt.% and 5 wt.% SiC particles into the matrix. SiC particles of having 1 μm, 5 μm and 30 μm sizes were used as reinforcement. Composite samples were produced by powder metallurgy method and sintering was performed in an open atmospheric furnace at 700 °C for 2 h. Optical and SEM studies showed that the distribution of the reinforced particle was uniform. XRD analysis indicated that the dominant components in the sintered composites were Cu and SiC. Relative density and electrical conductivity of the composites decreased with increasing the amount of SiC and increased with increasing SiC particle size. Hardness of the composites increased with both amount and the particle size of SiC particles. A maximum relative density of 98% and electrical conductivity of 96% IACS were obtained for Cu–1 wt.% SiC with 30 μm particle size.  相似文献   

3.
By multi-stage rod-in-tube fiber drawing process, a single-mode fluorotellurite glass fiber was fabricated and reported for the first time. Benefiting from chemical–physical dehydration process to remove water and OH groups, the propagation loss was decreased to 1.9 dB/m at 1550 nm and the infrared window is extended from 2.8 μm to 4.2 μm, i.e. a new kind of mid-infrared glass fiber. The fiber is with a small core of 3.52 μm in diameter to meet single-mode condition, and the effective nonlinear parameter γ was estimated to be 236.7 W−1 km−1 at 1550 nm by using continuous-wave self-phase modulation method. © 2015 Elsevier B.V. All rights reserved.  相似文献   

4.
The mechanochemical synthesis of a La0.67Ce0.21Nd0.08Pr0.04Ni5 intermetallic is studied. The intermetallic is synthesised from a mixture of LaNi5 and La0.25Ce0.52Nd0.17Pr0.06Ni5. The processes controlling the mechanical alloying are characterised as a function of integrated milling time (tm). Effects of fracture and cold welding on the sample are identified by scanning electron microscopy. Compositional, microstructural and structural changes are analysed by energy dispersive spectroscopy and X-ray diffraction. The powder obtained has a particle size distribution of 9 ± 1 μm with an average crystallite size of 370 ± 10 Å and strain >10%. The intermetallic compound is annealed in Ar to increase crystallite size and to release strain. The structure is refined by the Rietveld method. Cell parameters are a = 4.982(2) Å and c = 3.980(9) Å, respectively. The advantage of the synthesis method using intermetallics instead of metals/alloys is discussed along with the characteristics of the powder obtained.  相似文献   

5.
《Advanced Powder Technology》2014,25(5):1469-1473
Two stainless steel (SS) AISI 316L powders have been processed by explosive consolidation using a cylindrical configuration. Powders with d50 of 9 and 5 μm and a phasic structure consisting of fcc and bcc are used. After shock processing (3.5 up to 4.9 mm/μs) hardness was evaluated. Powders with the lowest particle size and processed with the highest detonation velocities (4.9 and 4.1 mm/μs) gave rise to a bulk material where in the centre occurred a phase transformation of bcc to fcc phase. Nevertheless, the hardness values were dissimilar along the cross section depending on the macrodefects (centre hole and cracks) produced by detonation. After a pre-heating treatment (900 °C), this powder was full austenitic (fcc) and when submitted to explosive consolidation, it led a monolithic solid without cracks, with a density of 99% TMD (theoretical maximum density) and a hardness of 3.1 GPa. This value is lower than others measured, particularly when a centre hole is not present, revealing hardening by plastic deformation. Concerning powder with higher particle size (d50 = 9 μm), the presence of mainly austenite induces after shock processing function of detonation parameters and localisation hardness values from 3.9 up to 5.0 GPa. The homogeneity of hardness reflex of absence of defects and low stress are almost achieved only for low particle size powders, using the lowest detonation velocities (3.4 GPa).  相似文献   

6.
A spark plasma sintering (SPS) technique has been applied to prepare fully dense Al samples from Al powder. By applying a sintering temperature of 600 °C and a loading pressure of 50 MPa, fully recrystallized samples of nearly 100% density with average grain sizes of 5.2 μm, 1.3 μm and 0.8 μm have been successfully prepared using a sintering time of less than 30 min and without the need for a nitrogen atmosphere. A similarity between the grain size and powder particle size is found, which suggests a potential application of the SPS technique to prepare samples with a variety of grain sizes by tailoring the initial powder particle size. The SPS samples show higher strength than Al samples with an identical grain size prepared using thermo-mechanical processing, and a better strength–ductility combination, with the 1.3 μm grain size sample showing a yield strength (σ0.2%) of 140 MPa and a uniform elongation of more than 10%. This higher strength is related to the presence of oxide particles in the grain boundaries of the samples. It is concluded that SPS is an excellent technique for the production of very fine grained Al materials with high strength, by combining both grain boundary and oxide dispersion strengthening.  相似文献   

7.
Porous titanium-hydroxyapatite (Ti/HA) composite is a developed composite material suitable for bio-medical applications. Powder injection molding (PIM) with space holder method is used to produce porous Ti/HA with mechanical properties, similar to human bone, and pores helps to initiate tissue growth. However, the differences in physical and mechanical properties of these composites are the main challenges during debinding and sintering. Therefore, the main objective is to determine effects of binder systems and processing parameters on formability of Ti/HA composite. In PIM, a binder system is necessary to produce green and ultimately sintered part. There are two binder systems and variation of sintering temperature has been used. Results revealed that Polyethylene glycol (PEG)-based binder system is applicable with NaCl space holder and optimum sintering parameters, including temperature, heating rate, and holding time of 1300 °C, 10 °C/min, and 5 h, respectively. The fabricated porous Ti/HA exhibits average porosity, pore size distribution, compressive strength, and roughness values of 55%, 60 μm to 170 μm, 370 MPa, and 0.323 μm, respectively. FESEM results showed that the pores are interconnected. It may be an appropriate material for future bio-medical applications.  相似文献   

8.
《Optical Materials》2013,35(12):2101-2107
Cerium oxide films, of 0.3–1 μm thickness, were reactively deposited in the oxygen atmosphere onto quartz plates by the PVD method. An electron gun was used as an evaporation source. Films were characterized with the AFM method, Raman spectroscopy and spectrophotometrically. Optical properties of these films were examined for the wavelength range 0.2–2.5 μm. Films were characterized by high transparency, between 0.38 and 2.5 μm. The complex refractive index, n*=n  jk, was evaluated. The dispersion characteristics for n(λ) and k(λ) were presented. We found that the refractive index strongly depends on the temperature of substrates (300 K  Ts  673 K) during film deposition. Estimated values of the refractive index (at λ = 0.55 μm) were in the range 1.91–2.34.  相似文献   

9.
The pure Cu rods with an initial grain size of 410 μm were treated by using equal channel angular pressing (ECAP). The deformed microstructure and mechanical properties of ECAPed Cu samples were investigated. Special attention was paid on the refinement of grain size and local micromechanics of ECAPed Cu samples. The original coarse grains were refined to 320 μm after 4 passes. The final grains were composed of dislocation cells with a size of 500 nm–3 μm after 5–8 passes. The yield strength reached a saturation value of 368 MPa after 5 passes. The maps of microhardness distribution illustrated the inhomogeneity of local mechanical properties. The dislocation subdivision was the main deformation mode to refine the grain size, while twin fragmentation was restrained by dislocation slips for the reason of large initial grain size. Furthermore, the strengthening of ECAPed Cu was discussed.  相似文献   

10.
Demand to develop a simple and adaptable method for preparation the hierarchical porous scaffolds for bone tissue regeneration is ever increasing. This study presents a novel and reproducible method for preparing the scaffolds with pores structure spanning from nano, micro to macro scale. A macroporous Sr-Hardystonite (Sr–Ca2ZnSi2O7, Sr–HT) scaffold with the average pore size of ~ 1200 μm and porosity of ~ 95% was prepared using polymer sponge method. The struts of the scaffold were coated with a viscous paste consisted of salt (NaCl) particles and polycaprolactone (PCL) to provide a layer with thickness of ~ 300–800 μm. A hierarchical porous scaffold was obtained with macro, micro and nanopores in the range of 400–900 μm, 1–120 μm and 40–290 nm, after salt leaching process. These scales could be easily adjusted based on the starting foam physical characteristics, salt particle size, viscosity of the paste and salt/PCL weight ratio.  相似文献   

11.
FePd films were deposited on brass substrates through electrodeposition using an alkaline electrolyte, which were annealed at 500, 600, and 700 °C for 1 h to form the ordered γ1-FePd fct phase. After annealing, the γ1-FePd fct phase is observed at 500, 600 and 700 °C. FePd films show the normal direction close to <101>, <111> and <421> directions after annealing 500, 600 and 700 °C, respectively. After annealing 500, 600 and 700 °C the average area grain size is 0.28 μm, 0.37 μm and 1.22 μm, respectively. The maximum coercivity Hc of 309 Oe observed at 500 °C can be explained with both effects of the <001> easy axis and the small grain size.  相似文献   

12.
This paper describes the measurement of particle size distribution of silica nanoparticles by interactive force apparatus (IFA) under an electric field in order to suggest the application of the apparatus to the measurement of particle size distribution. The results were compared with results obtained from size measurement by dynamic light scattering. D50 measured by IFA was closer to the average particle size determined by TEM (5 nm). Also, when compared the results under three different supply voltage, (1) the results at 0.01 and 0.02 V were almost identical while (2) these results were different from the one at 0.04 V. The results indicate that breakage of coagulated particles possibly occur due to electric breakdown. The distribution measured by IFA (D50 = 5–7 nm) was larger than the one measured by DLS (D50 = 1 nm). The electric breakdown was explained by curve fitting of three different particle size distribution functions with particle size distribution obtained from IFA measurement.  相似文献   

13.
Thin foils having thickness values of 200 μm and less are commonly applied in the food industries, medical applications and more. Small punch technique (SPT) is a promising mechanical testing method for specimens thicker than 250 μm, in which a formulation correlating the measured parameters to standard tensile properties was previously reported. The current research is focused, for the first time, on the correlation between SPT and tensile mechanical properties of SS-316L thinner specimens in the range of 100–200 μm. It is demonstrated by finite-element-analysis, that the mechanical response of thin foils having thicknesses in the range of 25–500 μm can be divided into three categories. For specimens thicker than 300 μm, thin plate bending equations that were applied previously for thick specimens, are still valid, while for thinner specimens this theory fails to provide adequate correlation between SPT and tensile yield stress. For specimens thinner than 50 μm it was identified that equations derived from membrane solution should be employed rather than classical plate theory. For intermediate thickness values in the 50–300 μm range, a “transition-zone” was identified between plate and membrane-like mechanical responses. For the lower region, 50–100 μm, an analytical expression correlating the measured SPT parameters and the tensile yield stress is currently proposed.  相似文献   

14.
There is a considerable challenge in accurate characterisation of gold (Au) particles in low-grade plant ore mineral samples. This is particularly true for automated mineralogical tools such as X-ray micro-computed tomography (Micro-CT) and scanning electron microscopy (SEM), where the need for statistically meaningful numbers of particles requires many sections to be analysed. Whiles the Vertical Gas Stream (VGS) elutriator is suitable for coarse particle upgrading (i.e. >38 μm), the performance is poor for finer particles (i.e. <38 μm). Consequently, the system has been modified to Vertical Water Stream (VWS) elutriator using higher density fluid (i.e. water) to enable analysis of Au particles below 38 μm. In this work, the VGS system was used to upgrade Au particles in the ?53 + 38 μm size fraction (in rougher concentrate, rougher tailings, regrind mill discharge and regrind cyclone underflow) and the VWS system was used to upgrade Au particles in the ?38 μm size fraction of the regrind mill discharge sample. The VWS elutriator was calibrated using galena (specific gravity, S.G. of 7.58) and quartz (S.G. of 2.65) particles of <38 μm size as model minerals. From the calibration tests, partition curves as a function of particle size were generated. Using these measurements, theoretical partition curves for Au (S.G. of 19.3) have been calculated. The VWS concentrate was characterised using Micro-CT and compared with SEM coupled with energy dispersive X-ray (EDX) analysis of ?53 + 38 μm ore size fraction of the VGS concentrate of the four sample streams. The Micro-CT analysis of VWS Au concentrate showed that sufficient particles (Au) can be upgraded. SEM/EDX results indicate that regrind does not affect changes in free Au particle morphology, aspect ratio and frequency of shearing damage in the ?53 + 38 μm size fraction. Cyclone classification of the regrind mill discharge in the ?53 + 38 μm size fraction appears to perform surface cleaning by exposing obscuring silver (Ag) surfaces on Au particles in the mill discharge sample.  相似文献   

15.
An experimental investigation of heat transfer through porous media in superfluid helium has been conducted in the framework of the development of porous electrical insulations for superconducting magnet cables cooled by superfluid helium. Several types of porous media with different characteristics were tested and, in particular, samples with pore size diameters of 0.1 μm, 1 μm, 2 μm, 10 μm and 20 μm. Temperature and pressure were measured between an insulating inner bath and the cryostat bath, communicating only through the porous medium. The cryostat bath is held constant all along the measurement and, for each sample, the tests are performed for bath temperature from 1.4 K to 2.1 K with 0.1 K increment. Depending on the porous medium average pore size diameter, different flow regimes are observed: for porous media with a pore diameter of 0.1 and 1 μm, only the Landau regime is observed whereas for porous media with a pore diameter of 2 μm, we observed the Landau regime and the Gorter-Mellink regime. For samples with a pore diameter of 10 and 20 μm, measurements only permitted to detect the Gorter-Mellink regime. In the laminar regime, the permeability of the samples was determined and it was found that the permeability is constant for bath temperature above 1.9 K whereas it increases as the bath temperature decreases from 1.8 K to 1.4 K. For samples with a pore size diameter of 10 and 20 μm, measurement permits only to observe the turbulent regime and the analysis exhibits a constant average tortuosity for each samples, independently of the bath temperature.  相似文献   

16.
A novel ultra-bandwidth polarization splitter based on soft glass dual-core photonic crystal fiber (DC-PCF) is designed in this paper, which is analyzed through the finite element method (FEM). The coupling characteristics of the designed DC-PCF can be enhanced by a high refractive index As2S3 core. Numerical results show the ultra-bandwidths of the x- and y-polarization modes can reach to 86 nm and 60 nm as the extinction ratios better than −20 dB and −30 dB at the vicinity of the wavelength of 1.31 μm. The length of the designed soft glass DC-PCF is 52.29 mm and the extinction ratios of the x- and y-polarization modes are −85.57 dB and −56.81 dB at the wavelength of 1.31 μm, respectively. In addition, the designed splitter has a tolerance of ±10 nm in its all structure parameters, which make the design not sensitive to the perturbation during the fabrication process.  相似文献   

17.
Indium (In) catalyzed silicon nanowires (SiNWs) were synthesized by using hot-wire chemical vapor deposition (HWCVD) technique. Indium droplets were deposited on Si substrates by hot-wire evaporation of In wire, which was immediately followed by the growth of SiNWs from the droplets. Three sets of samples were prepared by varying the length of In wires, l, as 3, 1 and 0.5 mm. The sizes of In catalyst droplets decreased from 271.4 ± 66.8 to 67.4 ± 16.6 nm when the l was reduced from 3 to 0.5 mm. Larger size of In droplets (271.4 ± 66.8 nm) was found to induce the growth of worm-like NWs. The decrease in size of In catalyst droplets induced the formation of aligned and tapered NWs with smaller tips. The smallest value of tapering parameter, Tp of 40.5 nm/μm is correlated to the SiNWs induced by the smallest size of In droplets (67.4 ± 16.6 nm). The as-grown SiNWs showed high purity and good crystalline structure.  相似文献   

18.
For the fabrication of bulk near-net-shape shape memory alloys and porous metallic biomaterials, consolidation of Ti–Ni–Mo alloy powders is more useful than that of elemental powders of Ti, Ni and Mo. Ti50Ni49.9Mo0.1 shape memory alloy powders were prepared by gas atomization, and transformation temperatures and microstructures of those powders were investigated as a function of powder size. XRD analysis showed that the B2–R–B19 martensitic transformation occurred in powders smaller than 150 μm. According to DSC analysis of the as-atomized powders, the B2–R transformation temperature (TR) of the 25–50 μm powders was 18.4 °C. The TR decreased with increasing powder size, however, the difference in TR between 25–50 μm powders and 100–150 μm powders is only 1 °C. Evaluation of powder microstructures was based on SEM examination of the surface and the polished and etched powder cross sections and the typical images of the rapidly solidified powders showed cellular morphology. Porous cylindrical foams of 10 mm diameter and 1.5 mm length were fabricated by spark plasma sintering (SPS) at 800 °C and 5 MPa. Finally these porous TiNi alloy samples are heat-treated for 1 h at 850 °C, and then quenched in ice water. The bulk samples have 23% porosity and 4.6 g/cm3 density and their TR is 17.8 °C.  相似文献   

19.
The effects of initial grain size of commercial pure aluminum on hot deformation behavior were investigated using hot compression tests. The hot compression tests were carried out on the pure aluminum samples with the initial grain sizes of 50, 150 and 450 μm using various strains, strain rates and different deformation temperatures. It was found that the hot deformation behavior of used material was sensitive to deformation conditions and initial microstructure. Results indicate that the initial grain size has significant effect on the flow stress. Flow stress decreases when the grain size decreases from 450 to 50 μm and when strain rate is lower than 0.05 s−1. This procedure is reversed at strain rate of 0.5 s−1. Furthermore, effects of other parameters like the strain rates and deformation temperatures on the flow stresses and hardening rates were investigated. It was also found that the inhomogeneity of microstructure distribution at different positions of the deformed specimens depended on the amount of deformation concentration at particular points and other processing parameters such as initial grain sizes, strain rates and deformation temperatures. In addition the geometric dynamic recrystallization (GDRX) was observed in the specimens highly strained (0.7) at elevated temperature (500 °C) using polarized light microscope and sensitive tint (PLM + ST).  相似文献   

20.
The RESS method was used to manufacture the fine particles of diclofenac. A reduction in particle size increases the dissolution rate of the drugs in the biological fluids and enhances the bioavailability of them in body. CO2 was used as the supercritical fluid because of its mild critical temperature (31.1 °C) and pressure (7.38 MPa). In this study, effect of extraction temperature (313–333 K), extraction pressure (14–220 MPa), spraying distance (1–10 cm), nozzle length (2–15 mm) and effective nozzle diameter (450–1700 μm) were investigated.Based on the different experimental conditions, the average particle size of diclofenac was between 10.92 and 1.33 μm. The size and morphology of the micronized diclofenac particles were monitored by scanning electron microscopy (SEM). The SEM images show a successful size reduction of virgin diclofenac particles. In all the experiments, the parameters had moderate effect on the mean particle size of the diclofenac. Also, the morphology of the processed particles was change to quasi-spherical and irregular while the virgin particles of diclofenac were irregular in shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号