首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A large glass-forming domain has been identified in the Pb2P2O7–Ag4P2O7–AgI system. The physical properties have been determined as a function of AgI content. The ionic conductivity has been studied as a function of the Ag+ ion total concentration and the Ag+ ion concentration issued from the AgI component. The structure and electrical properties of obtained glasses are compared with those of ionic glasses of the Ag4P2O7–AgI system.  相似文献   

2.
Bi2O3·B2O3 glasses doped with rare-earth oxides (RE2O3) (RE3+ = La3+, Pr3+, Sm3+, Gd3+, Er3+ and Yb3+) were prepared by the melting–quenching method. The relationships between composition and properties were demonstrated by IR, DSC, XRD and SEM analysis. The results show that the network structure resembles that of undoped Bi2O3·B2O3 glass, composing of [BO3], [BO4] and [BiO6] units. RE2O3 stabilizes the glass structure as a modifier. Transition temperature (Tg) increases linearly with cationic field strength (CFS) of RE3+. La2O3, Pr2O3, Sm2O3 and Gd2O3 are benefit to promote the formation of BiBO3 crystal. When Er2O3 and Yb2O3 are introduced, respectively, the main crystal phase changes to Bi6B10O24. Transparent surface crystallized samples are obtained by reheating at 460–540 °C for 5 h. In this case, needle like BiBO3 crystal or rare-earth-doped BiBO3 crystal (PrxBi1−xBO3 and GdxBi1−xBO3) are observed, which is promising for non-linear optical application.  相似文献   

3.
Thin films of the system xAl2O3–(100 − x)Ta2O5–1Er2O3 were prepared by a sol–gel method and a dip-coating technique. The influences of the composition and the crystallization of the films on Er3+ optical properties were investigated. Results of X-ray diffraction indicated that the crystallization temperature of Ta2O5 increased from 800 to 1000 °C with increased values of x. In crystallized films, the intensities of the visible fluorescence and upconversion fluorescence tend to decrease with an increase in x values, due to the high phonon energy of Al2O3; the strongest fluorescence is observed in a crystallized film for x = 4 heat treated at 1000 °C. In amorphous films obtained by heat treatment at relatively low temperatures the Er3+ fluorescence could not be observed because strong fluorescence from organic residues remaining in the films thoroughly covered the Er3+ fluorescence. On the other hand, the Er3+ upconversion fluorescence in the amorphous films was observed to be stronger than that in the crystallized films. The strongest upconversion fluorescence is observed in an amorphous film for x = 75 heat treated at 800 °C.  相似文献   

4.
High temperature persistent spectral hole burning up to room temperature has been observed in Eu3+ ions doped oxy-fluoride glasses with a composition of 30CaF2–10Al2O3–60B2O3 (mol%) melted in a reducing atmosphere. The hole stability was studied through light-induced hole refilling and temperature cycling experiments. The burned holes survive thermal cycling to 300 K due to a high barrier height of 0.69 eV in the sample.  相似文献   

5.
In this investigation, thermal and structure finite element analysis has been employed to analyse the thermal stresses developed in Al2O3–SG, ZrO2–12%Si+A1 and ZrO2–SG.coatings subjected to thermal loading. Systems with 0.4 mm coating thickness and 4 mm substrate material thickness were modelled. Zirconia–spherical cast iron (SG) coatings with NiAl, NiCrAlY and NiCoCrAlY interlayers were also modelled. Nominal and shear stresses at the critical interface regions (film/interlayer/substrate) were obtained. The results showed that the lowest stress levels are in ZrO2–SG coatings. Furthermore, the interlayer thickness and material combinations have a significant influence on the level of the developed thermal stresses. It is also concluded that the finite element technique can be used to optimise the design and the processing of ceramic coatings.  相似文献   

6.
Dense TiC–Al2O3–Al composite was prepared with Al, C and TiO2 powders by means of electric field-activated combustion synthesis and infiltration of the molten metal (here Al) into the synthesized TiC–Al2O3 ceramic. An external electric field can effectively improve the adiabatic combustion temperature of the reactive system and overcome the thermodynamic limitation of reaction with x < 10 mol. Thereby, it can induce a self-sustaining combustion synthesis process. During the formation of Al2O3–TiC–Al composite, Al is molten first, and reacted with TiO2 to form Al2O3, followed by the formation of TiC through the reaction between the displaced Ti and C. Highly dense TiC–Al2O3–Al with relative density of up to 92.5% was directly fabricated with the application of a 14 mol excess Al content and a 25 V cm−1 field strength, in which TiC and Al2O3 particles possess fine-structured sizes of 0.2–1.0 μm, with uniform distribution in metal Al. The hardness, bending strength and fracture toughness of the synthesized TiC–Al2O3–Al composite are 56.5 GPa, 531 MPa and 10.96 MPa m1/2, respectively.  相似文献   

7.
The phase relations in CeO2–Eu2O3 and CeO2–Sm2O3 systems have been established under slow-cooled conditions from 1400 °C. The two-phase relations differ as the CeO2–Eu2O3 system showed only two monophasic phase fields, namely F-type cubic and C-type cubic, whereas CeO2–Sm2O3 system showed three phase fields namely F-type cubic, C-type cubic and a biphasic field comprising of C-type cubic and monoclinic phase. An interesting observation of this investigation is the stabilization of C-type rare-earth oxide after Ce4+ substitution, which is attributed to decrease in average cationic size on Ce4+ substitution at RE3+ site. The lattice thermal expansion behavior of F-type solid solution and C-type solid solution in CeO2–Eu2O3 system was investigated by high-temperature XRD.  相似文献   

8.
Absorption and emission spectra are given for Yb3+-doped Y2O3, Lu2O3 and Gd2O3 at room temperature. Y2O3 and Lu2O3 as close cubic matrices, show Yb3+ similar spectra different of Yb3+ in Gd2O3 monoclinic structure. Here, we use a new method to study and optimize the main spectroscopic properties with only one concentration gradient sample. Finally, assignments of Yb3+ Stark levels and Raman vibrations in Y2O3, Lu2O3 and Gd2O3 single crystal are given.  相似文献   

9.
We report measurements of the energy transfer between Er3+ and Ce3+ in Y2O3. The transition between the Er3+ 4I11/2 and 4I13/2 excited states can be stimulated by energy transfer to Ce3+, augmenting the population in the 4I13/2 state at the expense of that in the 4I11/2 state. Experiments were performed on Y2O3 planar waveguides doped with 0.2 at.% erbium and 0–0.42 at.% cerium by ion implantation. From measurements of Er3+ decay rates as a function of cerium concentration we derive an energy transfer rate constant of 1.3×10−18 cm3/s. The efficiency of the energy transfer amounts to 0.47 at 0.42 at.% cerium. The energy transfer rate constant measured in Y2O3 is two times smaller for Er3+→Ce3+ than that for Er3+→Eu3+ in the same material.  相似文献   

10.
Photoinduced structural transformations in amorphous Sb2Se3–BaCl2–PbCl2 glasses were studied using a differential IR spectroscopy Fourier technique in the spectral region between 100 and 300 cm−1. A stage of the reversible photodarkening is realized in the Sb2Se3 fragments after the first cycle of photoexposure and thermoannealing. The whole scheme of the photo- and thermoinduced transformations in the amorphous system may be explained as a coordination of formation and annihilation of defects. The vibrational density of states calculated using quantum chemical solid state methods confirms our experimental results and their interpretation. Photoinduced photodarkening changes using a CO2 pulse laser (λ=10.6 μm) in new synthesized Sb2Se3–BaCl2–PbCl2 glasses were investigated. At the same time we have studied photoinduced second harmonic generation (SHG) and two-photon absorption (TPA). The possibility of using this glass as perspective materials for IR optoelectronics and nonlinear optics was shown.  相似文献   

11.
颜建辉  康蓉  唐幸  汪异  邱敬文 《复合材料学报》2021,38(11):3747-3756
多相Mo-12Si-8.5B合金是一种很有应用前景的高温结构材料,为了同时提高Mo-12Si-8.5B合金的强度和韧性,提出了采用纳米ZrO2(Y2O3)强韧化具有双峰晶粒度分布Mo-12Si-8.5B复合材料的方法。首先采用溶胶-凝胶和高温氢还原法制备了纳米Mo-ZrO2(Y2O3)复合粉末,然后以纳米Mo-ZrO2(Y2O3)粉末和微米Mo粉末为原材料,采用放电等离子烧结(SPS)技术制备了具有双峰晶粒度分布的Mo-12Si-8.5B-ZrO2(Y2O3)复合材料。结果表明,随着ZrO2(Y2O3)含量的增加,制备的Mo-ZrO2(Y2O3)纳米粉末的粒度和烧结体相对致密度均逐渐减小,ZrO2(Y2O3)含量小于2.5wt%时,烧结体的相对致密度均大于98.1%。当ZrO2(Y2O3)含量为1.5wt%和2.5wt%时,复合材料具有较高的硬度(9.76~9.98 GPa),抗弯强度(672~678 MPa)和断裂韧性(12.68~12.82 MPa·m1/2)。Mo-12Si-8.5B-ZrO2(Y2O3)复合材料中Mo晶粒细化、粗细Mo晶粒的晶界强化和纳米ZrO2(Y2O3)颗粒第二相强化是提高硬度和抗弯强度主要原因;复合材料中粗晶粒Mo和纳米ZrO2(Y2O3)有助于断裂韧性的提高,材料的增韧机制主要是裂纹偏转和裂纹桥接。   相似文献   

12.
A range of coloured electronic or mixed ionic–electronic glasses has been evidenced in the Na2O–MoO3–P2O5 system. The properties of these glasses have been studied along different composition lines corresponding either to a fixed Na2O content or a constant Mo/P ratio. An EPR spectroscopy investigation of these glasses has allowed to determine the Mo5+ ion percentages in these materials. The electrical properties of these glasses have been studied by impedance spectroscopy, and the electronic and ionic contributions have been evaluated. The properties of these sodium glasses have been compared with those of lithium glasses with the same compositions.  相似文献   

13.
The corrosion of magnesia–chrome (MgO–Cr2O3) brick in molten MgO–Al2O3–SiO2–CaO–FetO slag has been characterized using a dynamic rotary slag corrosion testing for various test cycles at 1650 °C. The open porosity decreases from 15.3 to 4.0% for three cycles, then it gradually increases from 4.0 to 4.8% when the test is extended to nine cycles, in which the permeating depth of the slag maintains at about 20 mm. The XRD pattern of the permeated layer shows the presence of the MgO, MgCr2O4 and CaMgSiO4 phases. In the interior of the permeating layer cracks are formed and corrosion starts at the pores and cracks of MgO and decreases gradually. However, at 20–40 mm beneath the permeated layer edge, different shapes of MgO particles are found.  相似文献   

14.
We report on the experimental results of frequency dependent a.c. conductivity and dielectric constant of SrTiO3 doped 90V2O5–10Bi2O3 semiconducting oxide glasses for wide ranges of frequency (500–104 Hz) and temperature (80–400 K). These glasses show very large dielectric constants (102–104) compared with that of the pure base glass (≈102) without SrTiO3 and exhibit Debye-type dielectric relaxation behavior. The increase in dielectric constant is considered to be due to the formation of microcrystals of SrTiO3 and TiO2 in the glass matrix. These glasses are n-type semiconductors as observed from the measurements of the thermoelectric power. Unlike many vanadate glasses, Long's overlapping large polaron tunnelling (OLPT) model is found to be most appropriate for fitting the experimental conductivity data, while for the undoped V2O5–Bi2O3 glasses, correlated barrier hopping conduction mechanism is valid. This is due to the change of glass network structure caused by doping base glass with SrTiO3. The power law behavior (σac=A(ωs) with s<1) is, however, followed by both the doped and undoped glassy systems. The model parameters calculated are reasonable and consistent with the change of concentrations (x).  相似文献   

15.
Wetting behavior and the interface reaction in the Y2O3/(Cu–Al) system were investigated at 1423 K. A contact angle of about 130° was measured in the Y2O3/Cu system. Aluminum addition to copper improves wetting and the transition from non-wetting to wetting (θ ≤ 90°) was observed for the alloy with 50 at.% Al. The microstructure examination of the interface indicates that Al reacts with yttria, yttrium dissolves in the melt and a crater of AlYO3 is formed at the substrate. The interface interaction in the Y2O3/(Cu–Al) system is in a good agreement with the results of a thermodynamic analysis in the Y–Al–Cu–O system. The crater depth and the macroscopic final contact angles are correlated with the Y and Al activities in the melt.  相似文献   

16.
Optically active Er3+:Yb3+ codoped Y2O3 films have been produced on c-cut sapphire substrates by pulsed laser deposition from ceramic Er:Yb:Y2O3 targets having different rare-earth concentrations. Stoichiometic films with very high rare-earth concentrations (up to 5.5 × 1021 at cm− 3) have been achieved by using a low oxygen pressure (1 Pa) during deposition whereas higher pressures lead to films having excess of oxygen. The crystalline structure of such stoichiometric films was found to worsen the thicker the films are. Their luminescence at 1.53 μm and up-conversion effects have been studied by pumping the Yb3+ at 0.974 μm. The highest lifetime value (up to 4.6 ms) is achieved in films having Er concentrations of ≈ 3.5 × 1020 at cm− 3 and total rare-earth concentration ≈ 1.8 × 1021 at cm− 3. All the stoichiometric films irrespective of their rare-earth concentration or crystalline quality have shown no significant up-conversion.  相似文献   

17.
We report on the properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 solid solution thin films for ferroelectric non-volatile memory applications. The solid solution thin films fabricated by modified metalorganic solution deposition technique showed much improved properties compared to SrBi2Ta2O9. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 600°C and grain size was found to be considerably increased for the solid solution compositions. The film properties were found to be strongly dependent on the composition and annealing temperatures. The measured dielectric constant of the solid solution thin films was in the range 180–225 for films with 10–50% of Bi3TaTiO9 content in the solid solution. Ferroelectric properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 thin films were significantly improved compared to SrBi2Ta2O9. For example, the observed remanent polarization (2Pr) and coercive field (Ec) values for films with 0.7SrBi2Ta2O9–0.3Bi3TaTiO9 composition, annealed at 650°C, were 12.4 μC/cm2 and 80 kV/cm, respectively. The solid solution thin films showed less than 5% decay of the polarization charge after 1010 switching cycles and good memory retention characteristics after about 106 s of memory retention. The improved microstructural and ferroelectric properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 thin films compared to SrBi2Ta2O9, especially at lower annealing temperatures, suggest their suitability for high density FRAM applications.  相似文献   

18.
The effect of Al2O3 particles on microhardness and room-temperature compression properties of directionally solidified (DS) intermetallic Ti–46Al–2W–0.5Si (at.%) alloy was studied. The ingots with various volume fractions of Al2O3 particles and mean 22 interlamellar spacings were prepared by directional solidification at constant growth rates ranging from 2.78×10−6 to 1.18×10−4 ms−1 in alumina moulds. The ingots with constant volume fraction of Al2O3 particles and various mean interlamellar spacings were prepared by directional solidification at a growth rate of 1.18×10−4 ms−1 and subsequent solution annealing followed by cooling at constant rates varying between 0.078 and 1.889 K s−1. The mean 22 interlamellar spacing λ for both DS and heat-treated (HT) ingots decreased with increasing cooling rate according to the relationship λ−0.46. In DS ingots, microhardness, ultimate compression strength, yield strength and plastic deformation to fracture increased with increasing cooling rate. In HT ingots, microhardness and yield strength increased and ultimate compression strength and plastic deformation to fracture decreased with increasing cooling rate. The yield stress increased with decreasing interlamellar spacing and increasing volume fraction of Al2O3 particles. A linear relationship between the Vickers microhardness and yield stress was found for both DS and HT ingots. A simple model including the effect of interlamellar spacing and increasing volume fraction of Al2O3 particles was proposed for the prediction of the yield stress.  相似文献   

19.
Glasses of various compositions in the system (100 − x)(Li2B4O7) − x(SrO–Bi2O3–0.7Nb2O5–0.3V2O5) (10  x  60, in molar ratio) were prepared by splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses (DTA). The amorphous nature of the as-quenched glasses and crystallinity of glass nanocrystal composites were confirmed by X-ray powder diffraction studies. Glass composites comprising strontium bismuth niobate doped with vanadium (SrBi2(Nb0.7V0.3)2O9−δ (SBVN)) nanocrystallites were obtained by controlled heat-treatment of the as-quenched glasses at 783 K for 6 h. High resolution transmission electron microscopy (HRTEM) of the glass nanocrystal composites (heat-treated at 783 K/6 h) confirm the presence of rod shaped crystallites of SBVN embedded in Li2B4O7 glass matrix. The optical transmission spectra of these glasses and glass nanocrystal composites of various compositions were recorded in the wavelength range 190–900 nm. Various optical parameters such as optical band gap (Eopt), Urbach energy (ΔE), refractive index (n), optical dielectric constant and ratio of carrier concentration to the effective mass (N/m*) were determined. The effects of composition of the glasses and glass nanocrystal composites on these parameters were studied.  相似文献   

20.
Amorphous films in the system SiO2–ZrO2 were prepared by radiofrequency sputtering method and their density, refractive index, elastic constants, and thermal expansion coefficient were measured. All of the physical properties had a similar compositional dependence; that is, they increased, but not proportionally, with increasing ZrO2 content. The coordination states of cations in these amorphous films were estimated by the compositional dependence of volume and molar refractivity. The coordination state of silicon ions in the amorphous films did not change, but the coordination number of zirconium ions changed from 8 to 6, depending on ZrO2 content. These results indicate that, in amorphous films in the system SiO2–ZrO2, the change of the coordination state of zirconium ions in the amorphous films has an important effect on the properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号