首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composites Part B》2013,45(1):184-192
This paper presents an enhancement method for basalt fiber-reinforced polymer (BFRP) and the corresponding design optimization for application in long-span cable-stayed bridge. Based on previous studies of long-span cable-stayed bridge with FRP cables, the limitations of BFRP cables were first clarified and potential enhancement methods were proposed from both material and structural design perspectives. The basic mechanical properties and fatigue behavior of BFRP and the related hybrid FRP were experimentally studied and the hybrid effect on enhancing both types of properties was assessed. To address the improvement of utilization efficiency of FRP cables, design optimization of various FRP cables were proposed in terms of material enhancement and structural design requirement of long-span cable-stayed bridges. The results show that hybridization of basalt and carbon fibers not only increase the overall potential strength and the modulus but also enhance the fatigue behavior in comparison to basalt FRP. Meanwhile, hybrid basalt fiber and steel-wire FRP exhibits higher initial modulus and maintain high failure strain. Furthermore, design recommendation of FRP cables proposed in terms of lower limit, upper limit of safety factors and practical consideration result in FRP cables achieving higher integrated performance compared to those by conventional design.  相似文献   

2.
To overcome the limitations of conventional steel stay cables in a thousand-meter scale cable-stayed bridge, hybrid basalt and carbon (B/C) FRP cables were investigated to achieve integrated high performances in the bridge of this scale as a replacement for steel cables. First, the material properties of different cables were discussed, and static and dynamic analyses on the entire bridges with different cables were conducted by means of finite element method. Moreover, the aerodynamic stability of different cables was studied in terms of the Scruton number. Results show that (1) hybrid B/CFRP with a 28% volume proportion of carbon fibres exhibits relatively high stiffness, economical cost, a small sag effect and sufficient fatigue resistance, which was proven suitable for stay cables; (2) based on the stiffness principle, the cable-stayed bridge with hybrid B/CFRP cables exhibits linear L–D behaviour and higher stiffness compared to the bridge with steel cables under the static load, and this advantage would become more apparent with the elongation of span; (3) the hybrid B/CFRP cable processes much higher natural frequencies than steel cables, which could lower the possibility of resonance between stay cables and the bridge deck. Furthermore, the aerodynamic stability of hybrid B/CFRP cables is superior to other cables due to its designable inherent damping.  相似文献   

3.
This paper studies the degradation of the tensile properties of prestressed basalt fiber-reinforced polymer (BFRP) and hybrid FRP tendons in a marine environment. Two levels of prestressing toward typical prestressing applications were applied in the experiment. The variations of tensile strength, elastic modulus and the relevant coefficient of variation (CV) were first investigated. The effect of prestressing on tensile property degradation was discussed. The characteristics of prestressed hybrid FRP tendons in a marine environment simulated by a salt solution were clarified. Moreover, a prediction model of BFRP tendons with different levels of prestressing in a marine environment was proposed. The results show that the BFRP tendons’ superior resistance to salt corrosion and the degradation rate of their tensile strength is nonlinearly proportional to the prestressing ratios, whereas the elastic modulus remains constant regardless the prestressing ratio and aging duration. Although prestressing on BFRP tendons accelerates degradation, it can still lower the variation of the strength of the BFRP tendon. Hybridization can lower the degradation rate of basalt and carbon FRP (B/CFRP) without prestressing, whereas basalt and steel-wire FRP (B/SFRP) exhibit much faster degradation due to the internal corrosive steel wires. The model regression by the Napierian logarithm equation well represents the degradation trend of BFRP tendons under different levels of prestressing.  相似文献   

4.
Stochastic seismic analysis of long-span bridges with Carbon fibre reinforced polymer (CFRP) cables are presented in this study through combination of the advantages of the perturbation based stochastic finite element method (SFEM) and Monte Carlo simulation (MCS) method. Jindo cable-stayed and Fatih Sultan Mehmet (Second Bosporus) suspension bridges are chosen as an example. Carbon fibre reinforced polymer cable (CFRP) and steel cables are used separately, in which the cable’s cross sectional area is determined by the principle equivalent axial stiffness. Geometric nonlinear effects are considered in the analysis. Uncertainties in the material are taken into account and Kocaeli earthquake in 1999 is chosen as a ground motion. The efficiency and accuracy of the proposed algorithm are validated by comparing with results of MCS method. It can be stated that using of CFRP cables in long-span bridges subjected to earthquake forces is feasible.  相似文献   

5.
The paper presents a theoretical evaluation on modal damping of hybrid fiber reinforced polymer (FRP) cable with smart damper design in long-span cable-stayed bridge. The principles and design consideration of smart dampers were first clarified. Based on the energy principle, the theoretical equations of modal damping were derived for in-plane and out-of-plane vibrations, respectively. The parameters that influence the damping effect were further analyzed. Finally, an example of hybrid basalt and carbon FRP cable with smart dampers was selected to evaluate damping ratio in terms of the equations derived in the paper. The results show that (1) the smart dampers with discontinuous distribution benefit not only static and dynamic behavior of a cable but also optimization of damping; (2) the gap width, bonding, length and modulus of each smart damper can be optimized to obtain maximum of potential damping; (3) an example of smart damper designed hybrid FRP cable demonstrates its effectiveness for mitigating large magnitude of in-plane vibration, while more dominant damping effect is observed for suppressing out-of-plane vibration.  相似文献   

6.
应用碳纤维索的斜拉桥地震响应分析   总被引:1,自引:0,他引:1  
以在建的杭州湾跨海大桥北航道桥为对象,采用强度等效的原则将原桥的钢丝索替换成碳纤维索,利用能考虑拉索局部振动的斜拉桥地震响应分析程序,分析比较了同一地震荷载作用下碳纤维索斜拉桥与钢丝索斜拉桥的振动特性及地震响应差异,并探讨了引起差异的根本原因。结果表明:索桥耦合振动是引起两种拉索斜拉桥的振动特性和地震响应存在差异的根本原因,碳纤维索的自振频率高,发生索桥耦合振动的可能性低于钢索斜拉桥,同一地震荷载作用下碳纤维索斜拉桥的地震响应要较钢丝索斜拉桥有不同程度的降低。  相似文献   

7.
This paper addresses the effective use of carbon fiber reinforced polymeric (CFRP) materials in the cable system. As the span length of cable-stayed bridges increases, several technical challenges become more dominant with traditional material. This paper mainly focuses on improving the aerodynamic performance through implementing CFRP composites in the cable system in combination with steel. In order to maximize the improvement, a genetic algorithm (GA)-based optimization procedure is developed to optimize the distribution of CFRP and steel. A numerical example is presented and the results suggest the typical composition of an optimized CFRP-steel cable system for long-span cable-stayed bridges.  相似文献   

8.
Summary Carbon-fiber-reinforced polymer (CFRP) cables offer a very attractive combination of high specific strength and modulus (ratio of strength or modulus to density), outstanding fatigue performance, good corrosion resistance, and low axial thermal expansion. The high specific strength permits the design of structures with highly increased spans. The high specific modulus translates into a high relative equivalent modulus. This factor is very important in view of the deflection constraints imposed on large bridges. A relative high modulus coupled with a low mass density offer CFRP cables already an advantage for spans above 1000 m. Since 1980 EMPA has been developing CFRP cables for cable-stayed and suspension bridges that are produced as assemblies of parallel CFRP wires. The key problem facing the application of CFRP cables, and thus their widespread use in the future, is how to connect them. A new reliable anchoring scheme developed with computer-aided materials design and produced with advanced gradient materials based on ceramics and polymers is described. Early 1996 such CFRP cables with a load-carrying capacity of 12 MN (1200 metric tons) have been applied for the first time on a cable-stayed road bridge with a 124-m span. Each cable is built up from 241 CFRP wires having a diameter of 5 mm.  相似文献   

9.
邓宗才  高伟男  沈锋 《复合材料学报》2017,34(10):2220-2231
为了研究温度、应力水平等因素对纤维增强聚合物(Fiber Reinforced Polymer,FRP)筋在碱、盐环境下抗压强度衰减规律的影响,将FRP筋分别置于60℃和25℃的碱、盐溶液进行加速腐蚀试验,然后测定其抗压强度衰减规律。60℃下FRP筋的压应力水平分别为0%、20%和40%,腐蚀时间分别为10d、21d、42d;25℃下FRP筋压应力水平为0%,腐蚀时间分别为36d、64d、100d。通过观察腐蚀前后FRP筋表面形貌的变化,可以得出:FRP筋表面侵蚀程度随腐蚀时间的增加而增加;同条件下,碱溶液对FRP筋的表面侵蚀程度大于盐溶液。对腐蚀后的FRP筋进行抗压强度试验,结果表明:应力和温度的提高加速了FRP筋抗压强度的退化,在60℃碱溶液中腐蚀42d后,应力水平为0%和40%的玻璃纤维增强聚合物(GFRP)筋、玄武岩纤维增强聚合物(BFRP)筋和碳纤维增强聚合物(CFRP)筋抗压强度分别下降了31.8%、43.6%、51.5%和44.2%、54.8%、57.1%,60℃盐溶液中腐蚀42d后,应力水平为0%和40%的GFRP、BFRP和CFRP筋抗压强度分别下降了22.2%、31.8%、18.1%和29.0%、37.2%、23.5%。基于Fick定律,提出了考虑应力水平、温度和腐蚀时间的FRP筋抗压强度预测模型,该模型可用于预测FRP筋在实际工况下抗压强度衰减规律。  相似文献   

10.
为了探讨碳纤维复合材料(carbon fiber reinforced polymer,CFRP)和超高性能活性粉末混凝土(reactive powder concrete,RPC)在超大跨度斜拉桥中应用的可行性,以主跨1 008 m的大跨度钢主梁斜拉桥设计方案为例,采用拉索的等强度原则将原桥钢索替换成CFRP索,考虑截面刚度、截面应力和局部稳定等要求,将原桥钢主梁替换成RPC主梁,拟订了一座等跨度的CFRP拉索、RPC主梁斜拉桥方案。采用有限元法分别对两种方案结构的静力特性、动力特性、稳定性能以及抗风性能等进行了分析与比较。结果表明:从结构受力性能角度而言,采用超高性能混凝土主梁和CFRP拉索构成千米级跨度混凝土斜拉桥的结构体系是可行的。  相似文献   

11.
This paper provides the experimental results of a new hybrid beam intended for use in bridge applications. The hybrid beams were made up of pultruded Glass Fibre Reinforced Polymer (GFRP) hollow box section beams strengthened with a layer of Ultra-High-Performance-Concrete (UHPC) on top and either a sheet of Carbon FRP (CFRP) or Steel FRP (SFRP) on the bottom of the beam. Four hybrid FRP–UHPC beams were tested along with one control GFRP hollow box beam under four-point static flexural loading. Two types of beams were tested (Phase I and Phase II), which incorporated different connection mechanisms at the GFRP–UHPC interface. It was concluded that the hybrid beams had higher flexural strength and stiffness than the control beam, where the beams reinforced with SFRP showed greater percent cost effectiveness than beams reinforced with CFRP. In addition, the improved connection mechanism used in Phase II beams was found to provide adequate interface bond strength to maintain full composite action until ultimate failure.  相似文献   

12.
This paper presents the fatigue behaviour of various fibre reinforced polymer (FRP) composites, namely, carbon, glass, polyparaphenylenl benzobisoxazole (PBO), and basalt fibres, including the effect of hybrid applications such as carbon/glass and carbon/basalt composites. A coupon test was conducted to examine the mechanical characteristics of the FRP composites subjected to monotonic and cyclic loads. Test parameters included the applied load range and different types of hybridization. Study results show that (1) the mechanical properties of the emerging PBO and basalt fibres are comparable to those of the conventional carbon and glass fibres; (2) the tensile modulus of the fibres influences the failure mode of the composite coupons; (3) the progressive damage propagation causes fatigue failure of the composites; (4) the hybrid composites of carbon/basalt significantly improves the fatigue resistance in comparison to the homogeneous basalt composite, whereas the resistance of the carbon/glass hybrid composites does not provide such effects.  相似文献   

13.
通过12组72件喷射纤维/树脂复合材料(FRP)试样的拉伸强度试验,研究了纤维种类、树脂基体材料、纤维体积分数、纤维混杂比及纤维长度等因素对喷射FRP拉伸强度、弹性模量和断裂伸长率等性能的影响。通过8根钢筋混凝土(RC)柱试件的拟静力试验,研究了喷射玄武岩纤维/树脂复合材料(BFRP)和混杂玄武岩-碳纤维/树脂复合材料(BF-CFRP)加固震损RC柱的抗震性能,分析了喷射FRP层厚度、纤维混杂比、柱预损程度和柱轴压比等对加固试件的极限承载力、抗侧变形能力、刚度退化特征和滞回特性的影响。结果表明:玻璃纤维与乙烯基酯树脂基体的协同工作性能最优,而玄武岩纤维具有耐久性高、延性好、与乙烯基酯树脂基体协同工作性能好等优良性能,可以作为玻璃纤维的良好替代品;玄武岩纤维混杂少量比例的碳纤维作为树脂基体增强材料,可以有效提高喷射FRP的拉伸强度和变形性能;震损RC柱经喷射FRP加固后,可以基本恢复其震损前设计极限承载力,并有效提高其延性和耗能能力。该加固方法可以对地震区已震损RC柱进行快速加固,有效防止整体结构在余震中发生倒塌等严重破坏。   相似文献   

14.
Aluminum, FRP, and aluminum/FRP hybrid box beams designed for minimum weight are compared. The FRP beams consist of ±45° angle-ply windings with an intercalated unidirectional layer in the flanges. The hybrid beams consist of aluminum for the predominantly shear-loaded webs and part of the flange, and FRP in the parts of the flange with the maximum tensile or compressive stresses. All-CFRP beams have the lowest weight for a desired stiffness or strength, providing up to nearly 70% weight saving compared to aluminum beams. Hybrid beams are slightly heavier than all-composite beams, with up to 56% weight saving compared to aluminum, but they are easier and less expensive to produce. A hybrid beam can be produced at the same cost as an equivalent aluminum beam at a higher, more realistic CFRP price than an all-CFRP beam. Other advantages of aluminum/CFRP hybrids are increased ductility, a high fatigue resistance, and joining using conventional techniques for metals.  相似文献   

15.
In recent years, the use of adhesively-bonded fibre-reinforced composite materials has attracted widespread attention as a viable alternative for the retrofitting of civil infrastructure such as buildings and bridges. This has been particularly the case for concrete structures. The retrofitting of metallic bridges and buildings with FRP materials, however, is still in its early stages. In real life, these structures are subjected to dynamic loads. Therefore, it is necessary to understand the bond behaviour between steel and the strengthening materials for both static and dynamic loads. To examine the bond between steel plates and carbon fibre-reinforced polymers (CFRP) fabrics, this paper describes the experimental procedures and results of double strap steel joints loaded at different loading rates (2 mm/min, 3.35, 4.43 and 5 m/s). In this test program, ultimate load-carrying capacity, effective bond length, failure mechanism and strain distribution were examined for all loading rates. Different numbers of CFRP layers with different bond lengths were investigated. Experimental findings reveal that the maximum improvement in joint capacity occurs at a rate of 3.35 m/s. It was observed that the effective bond length is insensitive to loading rate for both joints. The failure modes and strain distributions, however, exhibit little difference between static and dynamic conditions.  相似文献   

16.
纤维增强复合材料(FRP)具有轻质、高强、耐腐蚀、耐疲劳的优点,是结构加固增强的理想材料。其中,具有环境友好特性的玄武岩纤维复合材料(BFRP)有望推动工程结构的绿色可持续化发展,得到国家和地方政府的大力支持。为进一步提升BFRP增强工程结构的性能与寿命,还需从BFRP材料性能和结构增强形式等方面进行改善。该文阐述了BFRP高性能化技术,并从设计理念、关键技术和力学性能三个方面,对三种新型BFRP增强结构形式进行了综述,包括高耐久损伤可控BFRP筋/网格-钢筋混合配置混凝土结构、BFRP型材-混凝土组合结构以及BFRP拉索大跨结构,并对BFRP新建结构的发展提出了建议和展望。  相似文献   

17.
向量式有限元(VFFE)法本质上是考虑几何非线性的有限元(FE)显式动力时程积分方法。阐述了向量式有限元的基本原理,对比了向量式有限元与基于单元随动坐标系的非线性有限元动力计算方法的相同点与差别,开发了使用杆、梁单元的有限元-向量式有限元统一算法框架的计算程序。使用该程序建立了大跨度斜拉桥计算模型,首先,使用非线性有限元法计算了斜拉桥的静力状态与动力特性,计算了列车-桥梁耦合动力作用下桥梁的振动;然后,使用向量式有限元法计算了斜拉桥在拉索突然断裂状态下的非线性振动;最后,计算了在列车-桥梁耦合动力作用下,拉索发生断裂时,桥梁与列车的振动状态。结果表明:使用向量式有限元可以简单可靠地直接模拟斜拉桥在破坏状态下的非线性振动状态;列车运行至跨中附近时,若斜拉桥跨中最长拉索突然发生断裂,对其他拉索的安全性影响不大,离断裂拉索越远的拉索受到的影响越小,但拉索突然断裂会对桥上行驶中列车的安全性造成威胁。该研究为大跨度斜拉桥在破坏状态下的非线性振动分析提供了新的解决方案。  相似文献   

18.
The prediction of long-term fatigue life of various FRP laminates combined with resins, fibers and fabrics for marine use under temperature and water environments were performed by our developed accelerated testing methodology based on the time–temperature superposition principle (TTSP). The five kinds of FRP laminates were prepared under three water absorption conditions of Dry, Wet and Wet + Dry after molding. The three-point bending constant strain rate (CSR) and fatigue tests for these FRP laminates at three conditions of water absorption were carried out at various temperatures and loading rates. As results, the mater curves of fatigue strength as well as CSR strength for these FRP laminates at three water absorption conditions are constructed by using the test data based on TTSP. It is possible to predict the long-term fatigue life for these FRP laminates under an arbitrary temperature and water absorption conditions by using the master curves. The characteristics of time, temperature and water absorption dependencies of flexural CSR and fatigue strengths of these FRP laminates are clarified.  相似文献   

19.
江佳斐  隋凯 《复合材料学报》2019,36(8):1957-1967
为提升纤维增强聚合物复合材料(FRP)在加固材料中的优势和发挥效率,同时克服传统纤维网格增强砂浆的抗裂性差的缺点,将超高韧性水泥基材料(ECC)替代砂浆作为FRP网格无机黏结剂的新型复合材料已被提出,但仍缺乏相关的基础研究。本文以新型聚乙烯型ECC为基材,重点研究FRP grid/ECC加固混凝土柱的加固机制。以标准混凝土圆柱为试验对象,采用新型ECC材料为基材的FRP grid/ECC复合材料,以不同强度素混凝土、不同网格材料(玄武岩纤维增强聚合物复合材料(BFRP)与碳纤维增强聚合物复合材料(CFRP)网格)为试验变量,研究了该加固方式下对混凝土轴心受压性能的影响。试验结果表明,该加固方法可有效改善素混凝土脆性压溃破坏模式,提高峰值强度及受压延性。基于FRP grid/ECC材性特征,提出两阶段FRP grid/ECC加固机制,并基于该机制提出加固素混凝土圆柱承载力计算方法。   相似文献   

20.
李寿英  黄韬 《振动与冲击》2013,32(1):122-127
覆冰斜拉索可能会发生驰振振动并影响到斜拉桥的安全。在进行风洞试验对6种覆冰拉索模型测力的基础上,推导了覆冰拉索1阶模态驰振的运动微分方程,并采用龙格-库塔法进行求解,得到了拉索的驰振响应规律。以海南洋浦大桥为工程背景,研究了中跨最长拉索M18的驰振临界风速,研究了覆冰长度、拉索阻尼比等对驰振临界风速的影响。结果表明,在新月形、扇形和D形覆冰条件下,中跨最长拉索M18的驰振临界风速在10-15m/s范围内,远小于基本风速,存在发生驰振可能性;随着阻尼比的增加、覆冰长度的变短以及拉索长度的变短,驰振临界风速增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号