首页 | 官方网站   微博 | 高级检索  
     


Integrated high-performance thousand-metre scale cable-stayed bridge with hybrid FRP cables
Authors:Xin Wang  Zhishen Wu
Affiliation:1. National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096, China;2. Key Laboratory of C & PC Structures Ministry of Education, Southeast University, Nanjing 210096, China;3. Composites Division, Jiangsu Green Materials Valley New Material T&D Co., Ltd, Nanjing 210019, China
Abstract:To overcome the limitations of conventional steel stay cables in a thousand-meter scale cable-stayed bridge, hybrid basalt and carbon (B/C) FRP cables were investigated to achieve integrated high performances in the bridge of this scale as a replacement for steel cables. First, the material properties of different cables were discussed, and static and dynamic analyses on the entire bridges with different cables were conducted by means of finite element method. Moreover, the aerodynamic stability of different cables was studied in terms of the Scruton number. Results show that (1) hybrid B/CFRP with a 28% volume proportion of carbon fibres exhibits relatively high stiffness, economical cost, a small sag effect and sufficient fatigue resistance, which was proven suitable for stay cables; (2) based on the stiffness principle, the cable-stayed bridge with hybrid B/CFRP cables exhibits linear L–D behaviour and higher stiffness compared to the bridge with steel cables under the static load, and this advantage would become more apparent with the elongation of span; (3) the hybrid B/CFRP cable processes much higher natural frequencies than steel cables, which could lower the possibility of resonance between stay cables and the bridge deck. Furthermore, the aerodynamic stability of hybrid B/CFRP cables is superior to other cables due to its designable inherent damping.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号