首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
运用TEM,FTIR对乳液聚合方法制备纳米Al2O3/PS复合粒子结构进行了表征,结果表明,制备出的复合粒子具备以纳米氧化铝为核、以聚苯乙烯为壳的核壳式结构;并将核壳式复合粒子用来增韧选区激光烧结聚苯乙烯,结果发现,其缺口冲击强度达到12.1kJ/m2,较纯聚苯乙烯提高了50%左右,比添加未经任何改性处理纳米氧化铝粒子的复合材料提高了30%;利用FE-SEM对试件的冲击断面进行了微观结构分析,结果表明:核壳式纳米Al2O3/PS复合粒子改善了纳米粒子与基体表面极性的差异,增强了其与聚合物基体之间的界面相容性,从而改性了选区激光烧结制备聚苯乙烯基复合材料,并很好地起到增韧的效果.  相似文献   

2.
水热法制备聚苯乙烯/CdS核壳结构纳米复合颗粒   总被引:1,自引:0,他引:1  
采用水热法合成聚苯乙烯/CdS核壳复合材料,同时引入聚乙烯吡咯烷酮改善CdS纳米粒子与聚合物基体间的亲和性,防止聚苯乙烯团聚;改变水热时间和Cd2+与S2-的摩尔比,对制备条件进行探索优化。利用SEM,TEM,XRD和FT-IR等测试手段对样品的形貌、成分、微观结构和粒度等进行表征。结果表明:水热法制备的聚苯乙烯/CdS复合材料具有明显的核壳结构,颗粒均匀,呈球形,核的平均粒径约260nm,CdS壳层厚度约10~50nm,有良好的可见光催化效能。  相似文献   

3.
以聚乙烯吡咯烷酮(PVP)为偶联剂,利用超声化学法制备了PS/CdS核壳型复合纳米粒子。为了深入理解核壳型纳米粒子的界面行为和形成机制,详细考察了PVP加入与否及用量、前体加入顺序、Cd2+与S2-摩尔比和反应时间等实验参数对核壳复合材料结构的影响。结果表明,适量PVP可改善CdS纳米粒子与PS聚合物基体间的亲和性,增强壳与核之间的相互作用,成功地将PS与CdS复合成单分散的、壳层完整且厚度可控的三维核壳型PS/CdS纳米复合粒子;且复合物比纯CdS粒子具有更高的可见光响应活性。  相似文献   

4.
为改善二氧化硅(SiO2)纳米粒子与聚合物基体间的亲和性,使SiO2表面功能化,将硅烷偶联剂KH-570引入C=C基团,采用乳液聚合方法在纳米SiO2粒子表面接枝苯乙烯(St)单体,实现了纳米二氧化硅表面的聚苯乙烯(PS)高分子包覆改性,制备了具有核/壳结构的SiO2-PS复合纳米粒子,产物的单体转化率和接枝效率在80%以上.研究了二氧化硅含量和偶联剂用量对聚合反应的单体转化率和接枝效率的影响,探讨了偶联剂的作用机理,利用FT-IR、TEM、TG对SiO2-PS复合粒子的表面结构进行了表征.结果表明,复合粒子具有明显的核壳结构,壳层厚度在20nm左右,乳液聚合过程可有效使二氧化硅的团聚体剥离呈纳米级颗粒.  相似文献   

5.
用溶胶-凝胶法制备了表面含可聚合官能团的亚微米SiO2粒子,利用在其表面的乳液聚合成功制备了具有核-壳结构的SiO2-聚甲基丙烯酸甲酯(PMMA)-甲基丙烯酸缩水甘油酯(GMA)复合粒子,通过TEM、FTIR和TGA对其结构进行了表征;然后制备了SiO2-PMMA-GMA/环氧树脂复合材料,利用SEM观察其断裂形貌,并分析了复合粒子增韧环氧树脂的机制。结果表明: SiO2为复合粒子的内核,粒径约为180 nm,其表面被PMMA-GMA聚合物包覆,厚度约为20 nm;PMMA-GMA聚合物与SiO2的质量比为87.4%,PMMA-GMA聚合物对SiO2的接枝率及PMMA-GMA聚合物的有效接枝率分别为77.0%和88.1%;当SiO2-PMMA-GMA复合粒子在环氧树脂中的含量为4wt%时,其固化后的冲击强度可由19.2 kJ/m2增加到42.0 kJ/m2。  相似文献   

6.
采用细乳液聚合法,以3-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)表面改性的直径50nm的氧化硅粒子为核,在乳化剂、助乳化剂、引发剂存在的情况下制备了小粒径、单核核壳结构氧化硅/聚苯乙烯纳米复合微球.研究表明,苯乙烯的浓度、超声细乳化时间,是制备这种小粒径、单分散、单核核壳结构的氧化硅/聚苯乙烯纳米复合微球的关键因素.透射电镜(TEM)的观察显示,在优化的实验条件下,可以制得平均粒径95nm,壳厚20nm,粒径均一、球形规整度较好、单核核壳结构的氧化硅/聚苯乙烯纳米复合微球.其平均粒径远低于用其它聚合方法制备的复合微球.  相似文献   

7.
选择性激光烧结法制备聚合物/Al2O3纳米复合材料   总被引:5,自引:1,他引:5  
介绍了一种新的简单实用的制备大块聚合物/无机纳米复合材料的方法,即探索性地采用选择性激光烧结(SLS)法来制备聚合物/Al2O3纳米复合材料.结果表明,以表面已预处理的聚合物与纳米粒子Al2O3混合粉料作为SLS用粉,在一定的激光烧结工艺参数条件下,可将其烧结成纳米粒子均匀分散在聚合物基体中的块体材料;并可通过控制激光功率和扫描速度等激光烧结工艺参数获得不同性能的聚合物/纳米复合材料.  相似文献   

8.
以NiFe2O4纳米粒子作磁性载体、苯乙烯(ST)、正硅酸乙酯(TEOS)为原料,KH-570为交联剂,采用乳液聚合法制备了聚苯乙烯-SiO2/NiFe2O4磁性微球材料。通过VSM、FT-IR、SEM、TG-DTA、溶剂抽提等方法对磁性微球材料进行了测试。制备的NiFe2O4粒子为面心立方结构,NiFe2O4纳米颗粒及聚苯乙烯-SiO2/NiFe2O4磁性微球具有超顺磁性。聚苯乙烯-SiO2/NiFe2O4磁性微球以SiO2/NiFe2O4为核、PS为壳,通过KH-570接枝到SiO2/NiFe2O4上,核壳间以共价键相接的包覆型纳米粒子,平均直径为100nm左右,具有良好的热稳定性和耐溶剂性能。热重(TG)分析表明,磁性聚苯乙烯微球磁性物质质量分数为28.8%。  相似文献   

9.
以通过溶胶-凝胶法制备的中空介孔SiO2(HMSiO2)纳米微球为骨架材料,通过反相微乳液合成使天然高分子壳聚糖(CTS)沉积在HMSiO2纳米微球表面,随后在铈离子引发下于CTS表面进行丙烯腈接枝共聚并偕胺肟化,制备HMSiO2复合壳聚糖接枝聚偕胺肟(PAO)复合纳米粒子(HMSiO2@CTS-g-PAO)。通过FTIR和XRD对HMSiO2@CTS-g-PAO复合纳米粒子的结构进行表征。采用SEM和激光粒度分析仪对HMSiO2@CTS-g-PAO复合纳米粒子的形貌和粒径进行探究。结果表明:HMSiO2@CTS-g-PAO复合纳米粒子的内层为HMSiO2,外层为CTS-g-PAO,是典型的核-壳纳米粒子。以K2Cr2O7为Cr源,探究HMSiO2@CTS-g-PAO复合纳米粒子对Cr的吸附。结果表明,HMSiO2@CTS-g-PAO复合粒子对Cr的吸附过程符合伪二级吸附动力学,主要为化学吸附,对pH=2.0、浓度为91.4 mg/L的K2Cr2O7溶液中铬的最大吸附量高达3.28 mmol/g。  相似文献   

10.
以硅胶(SiO_2)和聚苯乙烯-丙烯酸(PSA)为原料制备SiO_2/PSA核壳结构型复合粒子。在相转化法制备聚合物薄膜的基础上,为避免粒子团聚提出以蒸汽方式代替传统的液滴方式,将非溶剂缓慢而均匀地加入SiO_2与PSA溶液的混合物中。采用红外光谱、扫描电子显微镜、激光粒度分析仪、热重分析、压汞仪和氮气吸附/脱附等方法对粒子的化学组成、形貌、粒径分布以及多孔结构特性作了分析和表征。结果表明,SiO_2/PSA复合粒子具有核壳结构,颗粒的分散性较好,PSA利用率几乎达到100%。聚合物溶液的浓度直接影响核壳粒子的表面形貌。与纯硅胶颗粒相比,由于致密的PSA膜覆盖在多孔硅胶上,SiO_2/PSA核壳复合粒子的孔隙率、比表面积、孔体积和平均孔径都大幅下降。  相似文献   

11.
Al2O3颗粒/耐热钢复合材料的制备及高温磨料磨损性能   总被引:11,自引:1,他引:10       下载免费PDF全文
氧化铝与耐热钢在高温下都具有优异的特殊性能,氧化铝硬度高、热稳定性好、耐热钢的抗氧化性与热强性高,因此氧化铝颗粒增强耐热钢基复合材料可望获得好的抗高温磨料磨损性能。在154~200 μm的氧化铝颗粒表面通过化学气相沉积技术获得Ni涂层后,通过在氧化铝颗粒中加入耐热钢颗粒的方法与负压铸渗技术,获得了氧化铝颗粒体积分数在18 %~52 %的氧化铝颗粒/耐热钢基复合材料,并考察了其在900℃的磨料磨损工况下的耐磨性。结果表明:所有复合材料的耐磨性均比耐热钢的好,耐磨性最好的复合材料是氧化铝颗粒体积分数为39 %的复合材料,其耐磨性是耐热钢的3.27倍。通过扫描电镜分析了复合材料的磨损机理及不同氧化铝颗粒体积分数复合材料的磨损行为。   相似文献   

12.
机械球磨法制备Ti3SiC2 / Al 纳米复合材料   总被引:1,自引:1,他引:0       下载免费PDF全文
研究了用微米级Ti3SiC2 陶瓷颗粒与Al 粉复合球磨制备纳米复合材料的工艺过程。结果表明, 在其他实验参数相同的条件下, 不同材质的磨球对陶瓷颗粒的细化作用差异很大。采用氧化锆磨球可以使Ti3SiC2 的颗粒更好地细化且均匀分散在Al 基体中, 而用钢球和玛瑙球则易产生混合粉的团聚。用氧化锆球进行球磨后的复合粉在550 ℃的温度及20 MPa 的压力下成功地制备了组织成分均匀的大块纳米复合材料。与同成分的非纳米材料相比, Ti3SiC2 / Al 纳米复合材料的硬度从HV60 提高到HV80 , 强度则从110 MPa 提高到150 MPa 。   相似文献   

13.
原位生成Al2O3/Cu复合材料的新工艺   总被引:2,自引:0,他引:2       下载免费PDF全文
采用一种新型工艺制备了Al2O3/Cu复合材料。高能球磨制备亚稳态的Cu-0.8 wt% Al合金粉,再将Cu2O粉与其一起进行高能球磨,然后将复合粉末压坯在真空炉中同时进行氧化和烧结。该工艺省略了还原剩余Cu2O的环节,氧化和烧结时间仅为1 h。生成的Al2O3的粒径约250nm,颗粒间距约500 nm,均匀弥散分布;该材料冷加工后性能接近SCM制品性能。该配比的Al2O3/Cu复合材料的热稳定性良好,在800℃下循环冷淬20次无裂纹;软化温度为700℃。  相似文献   

14.
电铸nano-Al2O3 / Cu 复合材料的组织与性能   总被引:2,自引:0,他引:2       下载免费PDF全文
采用复合电铸工艺, 在硫酸铜镀液中加入纳米氧化铝颗粒制备了纳米颗粒弥散增强铜基复合材料, 利用扫描电镜、电子透镜对复合材料的表面、拉伸断面和摩擦磨损表面的形貌以及微观组织进行了观察, 并对显微硬度、拉伸性能、磨损性能及电阻率进行了研究。结果显示, 氧化铝颗粒及其团聚体以纳米级尺寸弥散分布在铜基体中, 且与铜基体结合良好。复合材料的硬度最大增幅达42 %。氧化铝颗粒含量在1. 26 %时, 复合材料的拉伸强度和延伸率分别高达385 MPa 、26 %。相对电铸纯铜, 复合材料的耐磨性能明显提高, 而复合材料的电阻率最大增幅小于6 %。   相似文献   

15.
Al2O3 / 3Y-TZP 层状复合材料的制备及其超塑性能   总被引:2,自引:1,他引:1       下载免费PDF全文
采用流延制膜和热压烧结工艺制备了Al2O3 / 3 Y-TZP 层状复合材料。用SEM 观察显微组织, 并采用高温深拉实验对该材料进行了超塑性能研究。结果表明: 1550 ℃热压烧结制备的材料晶粒细小, 界面结合良好;当应变速率一定时, 变形温度对Al2O3 / 3Y-TZP 层状复合材料的超塑性能具有重要影响, 1500 ℃时得到深拉成形最大高度, 温度较高和较低时超塑性能均会降低。   相似文献   

16.
采用燃烧还原合成技术, 以还原体系(B2O3 + ZrO2 + Al) 为反应体系制备了ZrB2 / Al2O3 复合粉体。利用X射线衍射(XRD) 、X 射线光电子能谱(XPS) 和透射电镜( TEM、HRTEM) 对复合粉体的物相组成、化学组成及界面结构进行了表征分析。结果表明, 复合粉体中存在Zr 、B、Al 和O 元素且它们分别以ZrB2 和Al2O3 为主要存在形式, ZrB2 和Al2O3 为复合粉体的主晶相。复合粉体中有少量ZrO2 的存在, 分析认为是合成反应过程中未参加反应的ZrO2 。ZrB2 和Al2O3 颗粒间形成了结合良好的界面, 这主要与ZrB2 的结晶过程有关。   相似文献   

17.
Al 2O 3/ Al 复合材料的界面结构特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用高分辩透射电子显微镜研究挤压铸造法制备的亚微米 Al 2O 3颗粒增强 Al 基复合材料的界面微观结构。结果表明 : Al基体的 (200) 和 (111) 面优先沿 Al 2O 3颗粒表面生长 , 在复合材料界面处 Al 基体与 Al 2O 3颗粒具有 Al (200) ∥Al 2O 3 (101 2) 、Al [011 ] ∥Al 2O 3 [0221 ] 的晶体学位向关系并形成半共格界面 , 且界面存在 Al (111) / / Al 2O 3 ( 1120) 的共格关系。界面干净无任何反应物。接近界面的 Al 基体中出现了柏氏矢量为 b= 1/ 3 [ 111 ] 弗兰克不全刃位错 , 该刃位错引起界面附近基体中明显的晶格应变场 , 位错周围晶格变形场的范围约为 20~30 层原子面宽度 , 而在 Al 2O 3颗粒靠近界面的区域中未观察到位错等缺陷。并从晶体学角度对界面的形成机制进行了分析。  相似文献   

18.
Al2O3/6-6-3青铜复合材料的制备及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用粉末冶金法制备出Al2O3/青铜复合材料, 研究了烧结温度、Al2O3颗粒尺寸、含量及表面状态对复合材料性能的影响。结果表明, 采用二次压制与烧结工艺制备的复合材料的组织致密,Al2O3颗粒分布均匀, 综合性能优于6-6-3青铜材料。Al2O3颗粒的化学包覆处理可以使复合材料的性能进一步提高。   相似文献   

19.
基于正负电荷间的静电作用制备了具有核-壳结构的聚苯乙烯-氧化硅(PS-SiO2)杂化颗粒,通过调节正硅酸乙酯的用量对样品的SiO2壳层厚度进行控制。利用原子力显微镜(AFM)在微观尺度上测定杂化颗粒的力-位移曲线,根据Hertz接触模型和Sneddon接触模型,考查了SiO2壳层厚度对样品压缩弹性模量的影响。扫描电子显微镜(SEM)和透射电镜(TEM)结果显示,杂化颗粒中PS内核尺寸为(197±9)nm,壳层由SiO2纳米颗粒组成,在本试验范围内杂化颗粒样品的壳厚为11~16nm。在Hertz接触模型条件下,PS微球的弹性模量为(2.2±0.5)GPa,其数值略低于PS块体材料。当SiO2壳厚由11nm增至16nm时,杂化颗粒的弹性模量从(4.4±0.6)GPa增至(10.2±1.1)GPa,其数值明显低于纯SiO2,且更接近于PS内核。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号