首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以聚乙二醇(PEG,Mw1000)引发ε-己内酯(ε-CL)开环制得聚醚酯嵌段共聚物二醇(PCEC)软段,与二异氰酸酯(异佛尔酮二异氰酸酯和六亚甲基二异氰酸酯)和甲基丙烯酸羟乙酯反应,然后固化制得聚醚酯聚氨酯丙烯酸酯材料(PUA)。对PUA进行组成和结构的表征。结果表明,增加PCL链段能提高PUA材料的结晶度,但降低了吸水率和降解速率。PUA材料的酶解速率大于水解速率。PCEC2000-HDI材料具有优异的亲水性和降解性能,72h吸水率高达65.24%,在11周内就能在酶溶液中完全降解。该类PUA材料具有应用于组织工程材料的潜力。  相似文献   

2.
UV固化聚碳酸酯型聚氨酯丙烯酸酯的合成及性能研究   总被引:1,自引:0,他引:1  
以聚碳酸酯二元醇(PCDL),异佛尔酮二异氰酸酯(IPDI)和甲基丙烯酸-2-羟乙酯(HEMA)为主要原料合成了可紫外光固化的聚碳酸酯型聚氨酯丙烯酸酯(PCDL-PUA)低聚物,利用傅立叶红外光谱仪(FT-IR),核磁共振仪(1H-NMR)和凝胶渗透色谱仪(GPC)对树脂的结构进行表征,并与聚己内酯二元醇(PCL220N)合成的PUA进行交联膜的力学性能和漆膜的耐化性比较.研究结果表明:PCDL合成的PUA的交联膜具有较高的拉伸强度和断裂伸长率;其漆膜也有优异的耐化性.  相似文献   

3.
以三羟甲基丙烷(TMP)引发ε-己内酯(ε-CL)开环聚合,制得支化结构的聚己内酯三醇(PCL),以此为软段,异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)为主要原料,合成了主链为交联结构的水性聚氨酯胶黏剂(WPU)。讨论了R值(NCO/OH)、DMPA含量,聚己内酯三醇相对分子质量对水性聚氨酯乳液及胶膜性能的影响。结果表明,当R值为2.5、二羟甲基丙酸的质量分数为4%~5%、聚己内酯三醇的相对分子质量为1500、中和度为100%时,制得的乳液贮存稳定,粒径较小,胶膜的成膜手感较好,并具有较好的耐水性及力学性能。胶膜在270℃以下具有较好的热稳定性。  相似文献   

4.
PLA嵌段的聚氨酯丙烯酸酯大单体的合成及聚合物的制备   总被引:3,自引:0,他引:3  
利用乳酸与1,4-丁二醇(BDO)的缩聚反应,合成了PLA-BDO-PLA型嵌段预聚物,该预聚物与异佛尔酮-二异氰酸酯(IPDI)、甲基丙烯酸β羟乙酯(HEMA)反应,得到了聚氨酯丙烯酸酯大分子单体,将其固化制得聚氨酯材料.对材料的热行为(TG、DTG)及降解性能进行了表征,结果表明,该聚氨酯材料具有较好的热稳定性和降解性,在70 ℃水中静置24 h,其降解率可达9.55%;在室内环境下放置120 d后,材料的冲击强度下降26.3%.  相似文献   

5.
以2,4-甲苯二异氰酸酯和不同相对分子质量的聚丙二醇(PPG)为原料,有机铋为催化剂合成了含异氰酸酯端基的聚氨酯,然后用甲基丙烯酸羟乙酯封端得到聚氨酯丙烯酸酯。以聚氨酯丙烯酸酯为大分子交联剂,N,N-亚甲基双丙烯酰胺为小分子交联剂,丙烯酸和丙烯酰胺-2-甲基丙磺酸为单体,用紫外光引发剂引发聚合,在氯化钾(KCl)溶液中固化制得导电压敏胶。采用傅里叶变换红外光谱仪、核磁共振氢谱仪和凝胶渗透色谱仪对聚氨酯丙烯酸酯进行表征。对导电压敏胶的剥离力进行测试发现,当使用质量分数为2.4%的PPG2000软段聚氨酯丙烯酸酯为大分子交联剂时,所得到的导电压敏胶具有最大的剥离力,其导电性能随着KCl含量的增加而增强。生物相容性测试表明该导电压敏胶透气性好,对皮肤没有刺激性,具有临床应用的潜力。  相似文献   

6.
上海市合成树脂研究所以多官司能度、水溶性聚醚多元醇和异佛尔酮二异氰酸酯(IPDI)进行预聚反应合成-NCO封端的聚氨酯(PU)预聚体,再和甲基丙烯酸羟乙酯(HEMA)反应合成含有双键的聚氨酯丙烯酸酯(PUA)预聚体。该预聚体流动性好,易乳化于水,  相似文献   

7.
采用聚乙二醇单甲醚(MPEG)、异氟尔酮二异氰酸酯(IPDI)和甲基丙烯酸β-羟乙酯(HEMA)合成混合单体。然后与丙烯酸丁酯(BA)反应,通过乳液聚合的方法合成了聚氨酯-丙烯酸酯(PUA)复合乳液。以此为种子进行氯乙烯(VC)原位接枝乳液共聚,制造出了一种新型的PUA/PVC复合树脂。采用透射电镜(TEM)、动态力学分析仪、扫描电镜(SEM)等手段对PUA/PVC乳胶粒的形态、乳液PUA动态力学性能以及材料的断面形貌进行了研究。  相似文献   

8.
以制备水溶性丙烯酸酯为目标,采用溶液聚合法,以甲基丙烯酸羟乙酯(HEMA)、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)和丙烯酸(AA)为单体在溶剂中通过自由基共聚反应合成丙烯酸酯,再通过减压蒸馏脱除溶剂及未反应单体,最后加入浓氨水中和至pH为中性时来制得水溶性丙烯酸酯。通过改变溶剂的种类、AA用量及引发剂种类和用量,筛选出制备水溶性丙烯酸酯的最佳反应条件:以异丙醇∕正丁醇(体积比1∶1)作为溶剂,引发剂选择偶氮二异丁腈(AIBN),其用量为5g,AA用量为15g。所制水溶性丙烯酸酯涂膜后的耐水性较差。在酯中加入γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570),用异佛尔酮二异氰酸酯(IPDI)进行固化,对制备出的涂膜进行一系列性能测试和表征,发现涂膜耐水性得到明显改善,制得的水溶性丙烯酸酯综合性能良好,符合实际应用要求。  相似文献   

9.
采用异佛尔酮二异氰酸酯(IPDI)、聚乙二醇600(PEG600)、2,2-二羟甲基丙酸(DMPA)为主要原料合成水性聚氨酯分散体,然后分别通过甲基丙烯酸-2-羟乙酯(HEMA)、二甲基丙烯酸甘油酯(GMDA)和季戊四醇三丙烯酸酯(PETA)引入碳碳双键,制备了2,4,6官能度的3种聚氨酯丙烯酸酯(PUA)水性UV树脂(UV-WPUA)。利用二正丁胺法测定合成过程中异氰酸根(-NCO)含量的变化,通过红外光谱(FT-IR)表征了合成产物的结构,树脂的紫外光固化结果表明4官能度的树脂具有最高的转化率(80%);随着官能度的提高,吸水率降低而光泽度逐步提高,其中4官能度的树脂力学性能更为优良。  相似文献   

10.
以聚L-丙交酯(PLLA)为软段,异佛尔酮二异氰酸酯(IPDI)和甲基丙烯酸羟乙酯(HEMA)为硬段,采用两步法制备了双键封端的聚氨酯预聚物,通过UV辐射得到一种可用于生物医学材料,具有可生物降解性的交联聚氨酯(cPU)。利用核磁共振、凝胶渗透色谱、热失重及差示扫描量热分别表征了PLLA和cPU的组成、结构及热性能,此外,对cPU材料进行了力学性能和亲水性的表征及体外降解模拟实验。结果表明,增加硬段的含量,所制备的聚氨酯材料的玻璃化转变温度(Tg)和热稳定性提高,交联度、拉伸强度和降解速率增大,断裂伸长率减小;细胞实验表明,cPU材料能支持脂肪间充质干细胞(hASC)的粘附,说明cPU具有良好的生物相容性。  相似文献   

11.
以聚L-丙交酯(PLLA)为软段,异佛尔酮二异氰酸酯(IPDI)和甲基丙烯酸羟乙酯(HEMA)为硬段,采用两步法制备了双键封端的聚氨酯预聚物,通过UV辐射得到一种可用于生物医学材料,具有可生物降解性的交联聚氨酯(cPU)。利用核磁共振、凝胶渗透色谱、热失重及差示扫描量热分别表征了PLLA和cPU的组成、结构及热性能,此外,对cPU材料进行了力学性能和亲水性的表征及体外降解模拟实验。结果表明,增加硬段的含量,所制备的聚氨酯材料的玻璃化转变温度(Tg)和热稳定性提高,交联度、拉伸强度和降解速率增大,断裂伸长率减小;细胞实验表明,cPU材料能支持脂肪间充质干细胞(hASC)的粘附,说明cPU具有良好的生物相容性。  相似文献   

12.
伍燕  成煦  蒋禹旭  杜宗良 《功能材料》2013,44(11):1579-1583
为了探讨聚氨酯水分散液(WPU)的软段结构对聚氨酯-聚丙烯酸酯复合乳液(PUA)乳胶粒子形貌结构的影响,首先分别合成了不同软段结构的WPU,然后以其为种子乳液并滴加溶有引发剂的丙烯酸酯混合单体形成预乳液,升温聚合后得到PUA。通过对乳胶粒径测试和形貌观察发现,软段分子量较小时,形成的PUA乳胶粒没有明显的核/壳结构,软段分子量较大时,形成过渡层型、梯度型和草莓型结构的核/壳结构PUA乳胶粒,采用两种分子量的软段共混得到的PUA乳胶粒具有复杂的核/壳结构。  相似文献   

13.
以甲苯二异氰酸酯(TDI)、1,4-丁二醇(BDO)、聚醚二元醇(DL-1000)、二羟甲基丙酸(DMPA)和甲基丙烯酸羟乙酯(HEMA)为主要原料,合成纸张上光油UV固化聚氨酯-丙烯酸酯(PUA)乳液。用傅里叶红外光谱仪(FTIR)和激光纳米粒度仪等对其进行了表征,讨论了TDI/DL-1000摩尔比、-COOH含量、NCO/OH摩尔比和光引发剂等因素对乳液及涂膜性能的影响。研究表明,TDI/DL-1000的摩尔比为4,-COOH含量为2.1%(wt),NCO/OH的摩尔比为1.5时,制得的乳液的外观好,具有较高的光泽度和硬度,良好的耐水性和柔韧性等优异性能。使用TPO和184复配光引发剂且用量为3%(wt,下同)时光油固化速度最佳。  相似文献   

14.
采用异佛尔酮二异氰酸酯(IPDI)、聚醚二元醇N210和二羟甲基丙酸(DMPA)为主要反应原料, 合成出羧酸型水性聚氨酯, 并以甲基丙烯酸羟乙酯(HEMA)对其进行C=C封端, 然后使用该水性聚氨酯作为可聚合表面活性剂, 采用双原位细乳液法, 不同引发剂体系引发聚合, 制备出SiO2-聚甲基丙烯酸甲酯复合微球。通过TEM、FTIR和TGA等测试方法对所得产物进行了表征分析。结果表明, 使用水性聚氨酯表面活性剂(PUS)所制备的SiO2-聚甲基丙烯酸甲酯复合微球形貌, 不同于传统小分子表面活性剂所制得产物的形貌, 而且引发剂类型对SiO2-聚甲基丙烯酸甲酯复合微球形貌有较大影响。  相似文献   

15.
采用异佛尔酮二异氰酸酯(IPDI)或甲苯二异氰酸酯(TDI)与聚四氢呋喃醚二醇(PTMG)反应生成线型的分子结构,再加入甘油得到具有超支化结构的聚氨酯预聚体,接枝上丙烯酸酯制得超支化聚氨酯丙烯酸酯(PUA)。通过红外分析、核磁共振氢谱、凝胶渗透色谱和热重分析等对PUA的结构和性能进行了表征,讨论了甘油和丙烯酸酯的加入比例、反应时间和温度等因素对PUA性能的影响。研究结果表明,合成了预期结构的超支化PUA;10 min左右即可快速UV固化成1 mm厚膜;随着交联剂含量的增加,2种PUA的拉伸强度均达到50 MPa以上;拉伸剪切强度接近0.8 MPa;固化膜沸水中的吸水率低于5%,丙酮中的溶胀率低于300%,在酸或碱溶液中浸泡7 d,无起泡、起皱和发白等现象。  相似文献   

16.
扩链型光固化聚氨酯丙烯酸酯水性体系研究   总被引:1,自引:0,他引:1  
由甲苯二异氰酸酯,聚乙二醇,二羟甲基丙酸及甲基丙烯酸-β-羟乙酯合成了非扩链型和扩链型光固化聚氨酯丙烯酸酯(PUA),产物经叔胺中和后可以自乳化形式分散于水中,考察了聚乙二醇分子量PUA中羧基含量等因素对PUA分散液表面张力及流变性的影响。扩链型PUA具有较大的触变性,光聚合转化率明显高于非扩链型PUA,羧基含量增加对光聚合有一定阻碍作用。高分子量PEG促进PUA固化膜中软,硬段相区的分离,扩链有助于抑制相分离。  相似文献   

17.
采用二苯基甲烷二异氰酸酯(MDI)、聚丙二醇400(PPG400)和甲基丙烯酸羟乙酯(HEMA)为原料制备了聚氨酯丙烯酸酯(PUA)预聚体,而后采用实验室自制的超支化聚酯对PUA改性制备超支化聚氨酯(HPUA),并选用两种不同官能度的活性稀释剂对HPUA树脂进行分散,分别研究了两种活性稀释剂不同配比对树脂固化后的性能影响。研究结果表明:PUA预聚体的最佳合成温度为40℃,最佳封端温度为50℃;与未改性的PUA相比,超支化改性后的PUA粘度明显下降,树脂固化后的力学性能和玻璃化转变温度也有所提升;当活性稀释剂二缩三丙二醇二丙烯酸酯(TPGDA)和三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)配比为40wt%/60wt%时树脂固化后的综合性能最佳,此时树脂的玻璃化转变温度为136.67℃,拉伸强度为15.6MPa,断裂伸长率为17.1%,铅笔硬度为2H,冲击强度为31.3kg·cm-1,附着力为1级,柔韧性为1mm。  相似文献   

18.
不同端基聚氨酯-丙烯酸酯复合细乳液的表征   总被引:1,自引:0,他引:1  
采用异佛尔酮二异氰酸酯、聚丙二醇经1,4-丁二醇扩链的聚氨酯(PU),再经过甲醇或甲基丙烯酸羟乙酯封端后溶解在丙烯酸酯单体中,超声乳化后进行自由基细乳液聚合。NCO和OCH3为端基的PU构成的复合乳液GPC谱图都呈现两个峰,DSC和FT-IR分析发现,复合后增加了PU软段和硬段相分离的程度。甲基丙烯酸封端的复合乳液生成交联型聚合物,PU的硬段和硬段间的氢键也受到破坏。复合聚合物膜表面元素含量和本体接近,表明复合细乳液粒子未形成核-壳型结构。  相似文献   

19.
以原位无皂乳液聚合法,异佛尔酮二异氰酸酯(IPDI)、聚己内酯多元醇(PCL)、二羟甲基丁酸(DMBA)、丙烯酸羟乙酯(HEA)、苯乙烯(St)、丙烯酸丁酯(BA)等为主要原料,制备聚氨酯/丙烯酸酯微乳液(PUA),并研究微乳液对纸张疏水性影响。研究表明当m(DMBA)=8%,m(HEA)=4%,n(NCO)/n(OH)=1.6,m(PU)/m(PA)=1∶1时,经PUA微乳液表面处理后,纸张于水的渗透时间较空白纸样提高了73%,明显改善纸张的疏水性。采用FT-IR、TGA、SEM及动态接触角对PUA结构以及表面处理前后纸张性能变化进行了表征。FT-IR和TGA均证实丙烯酸酯组分的引入获得了聚氨酯/丙烯酸酯的复合结构,且聚合物热稳定性较PU明显提高;SEM观察证实,经PUA微乳液处理后纸纤维表面变得光滑,裂纹明显减少;动态接触角分析表明,水在纸表面所成的初始接触角达118°,且在300s内,其随时间变化较小。  相似文献   

20.
-NCO封端PU与丙烯酸羟基酯反应制得的PUA可UV固化.研究表明,热塑性聚氨酯弹性体输送带表面涂覆后从亲油变为憎油.当异福乐酮二异氰酸酯与聚四氢呋喃投料比为6:1(物质的量)、涂层干膜厚0.11mm、光固化90s时,甲基丙烯酸羟丙脂合成PUA的水接触角(或憎油角)达51.9°,丙烯酸羟丙酯合成PUA在TPU表面剥离强度达132.5N/m,交联剂用量为10%(质量分数,下同)时,涂层附着力为1级.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号