首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈延明  贾宏伟 《功能材料》2015,(5):5151-5154
首先以乙醇为溶剂,乙酸锌为前驱体,油酸钠为表面修饰剂,采用溶液化学法,制得ZnO纳米粒子。以自制ZnO纳米粒子为基体,通过煅烧方法制备针状ZnO纳米线束。通过紫外-可见吸收光谱(UVVis)、荧光光谱(FL)、透射电子显微镜(TEM)、X射线衍射(XRD)和扫描电子显微镜(SEM)等方法对合成的样品进行表征。结果表明,所合成ZnO纳米粒子样品UV-Vis吸收光谱在355nm给出ZnO纳米粒子的特征吸收峰,FL光谱显示在400和550nm处产生荧光发射。ZnO纳米粒子尺寸约为5nm且粒径分布较窄。自制ZnO纳米粒子样品经500℃煅烧后可得到针状ZnO纳米线束。纳米线为六方晶系纤锌矿结构ZnO单晶纳米线,长度约为10μm,直径约为100nm,长径比约为100,且具有良好的紫外发光性能。  相似文献   

2.
采用离散偶极子近似方法(discrete dipoleapproximation,简称DDA)从理论上对玻璃基底上不同粒径的Au纳米粒子结构阵列的消光光谱以及消光峰与纳米粒子粒径的关系进行了研究。计算结果显示玻璃基底上的Au纳米粒子结构阵列的消光谱中出现明显区别于Au单体纳米粒子的共振峰,玻璃基底上的Au纳米粒子结构阵列的消光性质与单体纳米粒子的粒径密切相关,随着纳米粒径的增大表面等离子体共振吸收峰出现明显红移,并且在粒径>40nm时出现多峰吸收现象。计算结果与实验结果基本一致。给出玻璃基底上的Au纳米粒子结构阵列的共振吸收峰随单体纳米粒子粒径变化的关系图。对Au纳米结构阵列的吸收机制进行系统的理论分析。  相似文献   

3.
黄泓轲  王明贤  杨华 《硅谷》2012,(15):123-124
利用化学共沉淀法合成磁性Fe3O4微粒,使用硅烷化试剂APTES(3-氨丙基三乙氧基硅烷)在乙醇分散的Fe3O4微粒表面进行氨基化修饰,并通过酸碱滴定法测得氨基化Fe3O4微粒表面的氨基含量为0.15mmol/g。采用Frens法合成粒径在20nm左右的纳米级胶体金,进一步利用Au-N键将金纳米微粒组装到Fe3O4微粒表面。可见光吸收光谱分析表明金磁微粒在520nm-550nm处表现出由于Au存在而产生的特征吸收峰,同时原子吸收光谱分析也获得金磁微粒的Fe3O4:Au元素构成比例为1:0.97。  相似文献   

4.
运用紫外可见吸收光谱,在水相金溶胶体系中研究了聚乙烯吡咯烷酮(PVP)在金纳米粒子表面的吸附.实验结果表明:PVP吸附在金纳米粒子的表面,使金纳米粒子的特征吸收峰的峰位红移15nm左右且强度下降.根据金溶胶中PVP加入量和特征吸收峰的变化,提出了PVP对溶胶中金纳米粒子的表面包裹经过的过程.  相似文献   

5.
制备了Fe3O4@Au纳米粒子,再通过两步法制备了全-6-硫代-β-环糊精,并用自组装法将β-环糊精修饰在纳米粒子表面,获得了环糊精功能化的Fe3O4@Au纳米粒子(Fe3O4@Au-β-CD)。实验发现,外界磁场作用下,复合纳米粒子具有快速响应性能;Fe3O4@Au-β-CD的紫外可见光谱中出现了Au特征吸收峰;透射电镜显示该粒子形貌呈球形,粒径在15.5nm左右;X射线光电子能谱中表明β-CD已修饰到纳米粒子表面;通过分别对比修饰前后Au、S的单谱,可知是β-CD通过Au-S键修饰到Fe3O4@Au表面;Fe3O4@Au-β-CD的红外光谱中出现了β-CD的特征峰,而且巯基吸收峰消失,确证了β-CD修饰到粒子表面;热重分析表明粒子表面β-CD的含量约为26.4%。  相似文献   

6.
以N,N-二甲基甲酰胺为溶剂,乙酸锌为前驱物,聚乙烯吡咯烷酮为表面修饰剂,采用溶液化学法,制备了氧化锌纳米粒子。通过紫外-可见吸收光谱(UV-Vis)、荧光光谱(FL)和透射电子显微镜(TEM)等方法对合成的氧化锌纳米粒子进行表征。结果表明:所合成样品具有量子尺寸效应,样品UV-Vis吸收光谱在335~350 nm给出了氧化锌纳米粒子的特征吸收峰;FL光谱显示在400,550 nm处产生荧光发射;氧化锌纳米粒子的尺寸在100 nm左右且粒径分布较窄,表明聚乙烯吡咯烷酮对氧化锌纳米粒子的表面起到良好的修饰作用。  相似文献   

7.
采用溶胶–凝胶法在Pt/Ti/Si O2/Si基板上制备了Au-Ba Ti O3纳米复合薄膜,并且对其晶体结构、微观组织和介电性能进行了研究。结果表明,Au在复合薄膜中以直径为5~22 nm的Au纳米粒子弥散地分布在Ba Ti O3基体中。Au的添加量对复合薄膜的介电性能和表面形貌有很大影响,其最佳添加量约为5mol%。复合薄膜经过550℃的低温退火已经完全结晶为钙钛矿相,其介电常数与700℃退火的纯Ba Ti O3薄膜的相当。在Au-Ba Ti O3复合薄膜的结晶过程中,一方面,Au纳米粒子可能促进了中间相的分解;另一方面,Au纳米粒子诱发了钙钛矿相的异质形核,促进了Ba Ti O3的结晶化。因此,Au纳米粒子大幅度地降低了复合薄膜的退火温度,并显著提高了复合薄膜的介电性能。  相似文献   

8.
用催化剂控制硅纳米线直径的研究   总被引:1,自引:0,他引:1  
本文研究了固-液-固(SLS)生长机制中催化剂与硅纳米线直径的关系。发现Si片上沉积的催化剂厚度和种类对硅纳米线的直径都有一定的影响,当使用Ni做催化剂时,硅纳米的直径与Ni膜厚度有关。其中硅纳米线的最大直径随催化剂厚度减小而减小,但最小直径基本不改变,当用Au做催化剂时,硅纳米线的平均直径和直径分布最小(10nm-20nm)。但硅纳米的直径不随Au膜厚度减小而减小。  相似文献   

9.
室温下用磁控溅射法在Si(111)衬底上生成Au/SiO2复合纳米颗粒膜,并分不同温度进行退火处理。1000℃退火时自组装生成空间分布均匀(直径约为70nm)的Au纳米点,从而用自组装生长方法制备了生长一维纳米材料的模板,然后,将Au催化剂模板在1100℃下退火处理,生成纳米线,SEM和TEM测试,制备的SiO2纳米线直径约为100nm,长度约为4μm,表面光滑,直且粗细均匀。  相似文献   

10.
以聚乙烯吡咯烷酮(PVP)为稳定剂,AgNO3为前驱物,乙醇为还原剂及溶剂,制备得到了银纳米粒子。采用紫外-可见吸收光谱及透射电子显微镜等方法对银纳米粒子的光学性质及形貌进行了表征。结果表明,以乙醇为溶剂,PVP可以对银纳米粒子的生长起到很好的表面修饰作用,银纳米粒子在400nm~410nm处产生明显的纳米银所具有的表面等离子态特征吸收峰,银纳米粒子的吸收强度随反应时间延长及前驱物浓度增加而提高。透射电子显微镜结果表明银纳米粒子具有球状形貌特征,尺寸分布窄。改变PVP与AgNO的投料比,可以得到不同尺寸的银纳米粒子。  相似文献   

11.
以聚乙烯吡咯烷酮(PVP)为稳定剂,AgNO3为前驱物,水、乙醇及N,N-二甲基甲酰胺为溶剂,制备银纳米粒子。采用紫外-可见吸收光谱对银纳米粒子形成的动力学过程进行了测定。结果表明,在特定PVP浓度、AgNO3浓度、反应温度和反应时间条件下,以水为溶剂,不能生成银纳米粒子,以乙醇及N,N-二甲基甲酰胺为溶剂,紫外-可见吸收光谱在410nm左右可观察到银纳米粒子所具有的表面等离子态特征吸收峰,动力学曲线表明,乙醇溶剂体系银纳米粒子具有较高的吸收强度。透射电子显微镜结果表明所得到的银纳米粒子具有球状形貌特征,且具有较窄的尺寸分布。  相似文献   

12.
将紫外光照射条件下亚甲基蓝功能化的多壁碳纳米管(f1-MWCNTs)作为Au纳米粒子的载体,Au纳米粒子通过光化学还原法制备获得后,负载于f1-MWCNTs表面。傅立叶变换红外吸收光谱(FTIR)表明,f1-MWCNTs表面存在C—N基团和N—H基团,为Au纳米粒子的负载提供了活性位点。透射电镜(TEM)和X射线衍射谱(XRD)表明,Au纳米粒子粒径约4.5nm左右,具有面心立方晶体结构,Au纳米粒子在f1-MWCNTs表面分散性良好。电化学实验结果表明,光照条件下改性碳纳米管所制备的催化剂(Au/f1-MWCNTs)对甲醇具有优异的催化性能,其质量电流密度是未经光照改性的碳纳米管负载Au纳米粒子催化剂(Au/f0-MWCNTs)的1.56倍。  相似文献   

13.
采用脉冲激光气相沉积技术,将Ni纳米颗粒嵌埋在MgO薄膜中,形成Ni∶MgO纳米复合薄膜(Ni NCs∶MgO)。分别采用高分辨X射线衍射技术和紫外-可见吸收光谱详细研究了薄膜的晶体结构及光学性质。HRXRD结果表明MgO薄膜和Ni纳米颗粒都沿着(200)方向生长;由于Ni纳米颗粒的嵌埋,导致MgO基质发生了晶格畸变,从而使得MgO基质的晶格常数发生改变;晶格畸变也导致MgO的衍射峰被展宽;Ni的含量与其颗粒尺寸随着沉积Ni的激光脉冲数的增加而增加。紫外-可见吸收光谱的分析结果表明在190~600nm波长范围内薄膜的吸收峰是Ni纳米颗粒的表面等离激元共振吸收峰;随着沉积Ni激光脉冲数的增加,单个吸收峰强度增强的同时还发生了红移;当沉积Ni的激光脉冲数从200增加到250时,吸收峰发生劈裂。  相似文献   

14.
以N,N-二甲基甲酰胺为溶剂,乙酸锌为前驱物,苯乙烯-马来酸酐共聚物为大分子稳定剂,采用溶液化学法,制备了氧化锌纳米粒子。通过紫外-可见吸收光谱(UV-Vis)、荧光光谱(PL)、透射电子显微镜(TEM)等方法对合成的ZnO纳米粒子样品进行表征。结果表明,所合成样品具有量子尺寸效应,样品UV-Vis吸收光谱在350nm给出氧化锌纳米粒子的特征吸收峰,样品PL光谱显示在410nm处可产生明显的荧光发射。氧化锌纳米粒子的尺寸在50~100nm且粒径分布较窄,表明苯乙烯-马来酸酐共聚物对氧化锌纳米粒子的表面起到了良好稳定作用。  相似文献   

15.
Co^2+掺杂ZnO纳米线的制备与光学特性的研究   总被引:1,自引:0,他引:1  
在十六烷基三甲基溴化铵表面活性剂辅助下,通过水热合成法制备了Co2 掺杂ZnO纳米线.纳米线的直径为100~160nm,长度约为10μm.纳米线沿(001)方向生长.Co2 掺杂ZnO纳米线紫外-可见(UV-vis)吸收光谱曲线,显示掺杂的ZnO纳米线在200~300nm波段之间都有很强的紫外吸收,在波长360~370nm处显示很好的激子吸收,与体相的激子吸收峰(373nm)相比产生了蓝移.纳米线分别在385、409、433、462和495nm波段表现出发光特性,简略的讨论了其发光机制.  相似文献   

16.
范闻  武利民 《无机材料学报》2018,33(12):1337-1342
利用纳米粒子由下而上的组装来制备具有亚波长特征结构的新材料已成为操控并利用光的重要手段。本研究报道了一种新的纳米组装技术——即硅油两步脱水法, 该方法利用油水界面的流变性和限制效应, 实现了可批量、高重复性地将15 nm的二氧化钛(TiO2)纳米粒子组装成具有高折射率、高透明度的光学材料, 并对其组装过程及机理进行了详细的分析。此外, 该方法还可实现TiO2纳米粒子与其他纳米材料, 如金(Au)纳米粒子、Au纳米棒、Au纳米立方块或氧化石墨烯之间均匀的复合, 制备出TiO2/Au或TiO2/氧化石墨烯复合材料。其中, TiO2纳米粒子的复合可使Au纳米粒子、Au纳米棒或Au纳米立方块的表面等离子体吸收峰产生显著的红移, 表明该组装法为未来制备功能性复合光电器件提供了有效的途径。  相似文献   

17.
陈爽  麦艺炽 《功能材料》2007,38(6):1019-1021,1026
利用相转移法成功地合成了粒径在2~7nm的硫醇表面修饰Au纳米粒子.采用透射电子显微镜、纳米粒度分布仪、红外光谱分析仪等现代测试技术对所合成的Au纳米粒子进行了表征.结果表明,表面为硫醇所修饰的Au纳米粒子,在有机溶剂中具有很好的分散性,表面修饰层的存在不仅有效地阻止Au纳米粒子的团聚,而且使得纳米粒子粒径分布窄,粒径可控.  相似文献   

18.
MBE法生长ZnO纳米线阵列的结构和光学性能   总被引:1,自引:0,他引:1  
在氧等离子体辅助的MBE系统中, 以1 nm厚的Au薄膜为催化剂, 基于气?液?固(VLS)机制实现了低温ZnO纳米线阵列在Si(111)衬底表面的生长. 通过场发射扫描电子显微镜(FE-SEM)可以观察到, ZnO纳米线阵列垂直生长在衬底上, 直径为20~30 nm. X射线衍射(XRD)和高分辨透射电镜(HRTEM)结果表明: ZnO纳米线为六方纤锌矿结构, 具有沿c轴方向的择优取向. 光致发光(PL)谱显示在380 nm附近有强烈ZnO本征发射峰, 475~650 nm可见光区域有较强的缺陷导致的发射峰.  相似文献   

19.
采用小分子柠檬酸钠对金纳米粒子进行包覆改性,紫外光谱分析经改性的金纳米粒子表面共振吸收峰为526iun,激光纳米粒度仪分析表明其平均粒径为8.4nm.改性后的金纳米粒子通过分子沉积技术,与聚二烯丙基二甲基胺盐酸盐(PDDA)组装,制得单层和多层PDDA/Au NPs复合纳米粒子分子沉积(MD)膜(简称PDDA/Au NPs复合MD膜).采用原子力显微镜(AFM)研究了PDDA/Au NPs复合MD膜的表面形貌以及摩擦、磨损行为.研究结果表明:该复合膜能降低基底的摩擦力,其中以3层膜降低摩擦力的效果最显著.在氮化硅探针扫描行程达到30次后,膜表面才开始出现磨损痕迹.随着扫描次数的增多,膜表面在探针剪切力的作用下逐渐由致密变得疏松,形成颗粒堆积,使表面粗糙度增大,摩擦力、磨损深度也随之增加.通过实验还发现这种复合膜存在两种非正常磨损现象,即磨损负增长和膜的脱落现象.  相似文献   

20.
用多孔氧化铝为模板,通过恒电位法沉积制得钯(Pd)纳米线,再用循环伏安法在Pd纳米线表面沉积铂(Pt)纳米粒子,制得纳米Pt/PdNWAs复合催化剂,并用扫描电镜进行了表征。结果表明,纳米Pt/PdNWAs电极相比PdNWAs电极和纳米Pt电极,对甲酸具有更高的电催化氧化活性和稳定性,甲酸的浓度为1.00mol/L时,经直接途径氧化的峰电流达到12.33mA,而经间接途径氧化的峰电流达到10.85mA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号