首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Objective: The present study discusses folic acid-etoricoxib-bovine serum albumin nanoparticles (F-ETX-NPs) using folic acid as an over expressed folate receptor ligand for activated macrophages in targeting of rheumatoid arthritis.

Materials and methods: For this purpose etoricoxib-loaded BSA nanoparticles (ETX-NPs) were prepared by desolvation method and activated folic acid conjugation with free amine group of BSA was confirmed by FTIR study and zeta potential measurements.

Results: The F-ETX-NPs showed spherical in shape with 215.8?±?3.2?nm average size?+?7.8?mV zeta potential, 72?±?1.3% etoricoxib entrapment efficiency and showed 93.1?±?2.2% cumulative etoricoxib release upto 72?h. The etoricoxib concentration from F-ETX-NPs was found to be 9.67?±?0.34?µg/g in inflamed joint after 24?h administration revealed remarkably targeting potential to the activated macrophages cells and keep at a high level during the experiment.

Discussion and conclusion: These results suggest that F-ETX-NPs are potentially vector for activated macrophages cells targeting of rheumatoid arthritis.  相似文献   

2.
The aim of this study was to design hirudin-loaded bovine serum albumin (BSA) nanoparticles to control release and improve antithrombotic effect of hirudin. BSA nanoparticles were designed as carriers for delivery of hirudin. Hirudin–BSA nanoparticles were prepared by a desolvation procedure and cross linked on the wall material of BSA. The hirudin–BSA nanoparticles were characterised by particle size distribution, zeta potential, entrapment efficiency, differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). The in vitro release characteristics and pharmacological availability were investigated. The morphology of hirudin–BSA nanoparticles was approximately spherical. The mean particle size was 164.1 ± 5.40 nm and the zeta potential was ?20.41 ± 0.64 mV. The mean entrapment efficiency and drug loading were 85.14% ± 4.79% and 66.38% ± 3.54%, respectively. Results from DSC and PXRD revealed that hirudin in BSA existed in an amorphous state. The release behaviours of hirudin from BSA nanoparticles in phosphate buffer solution were fitted to the bioexponential model. The in vivo result obtained after intravenous injection of hirudin–BSA nanoparticles in normal rats demonstrated that BSA nanoparticles could prolong the antithrombotic effect of hirudin in comparison with hirudin solution. These results suggest that hirudin–BSA nanoparticles may be a promising drug delivery system for thrombosis and disseminated intravascular coagulation therapy.  相似文献   

3.
Context: Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra.

Objective: The purpose of the present study was to investigate the possibility of targeting an anti-Parkinson’s drug ropinirole (RH) to the brain using polymeric nanoparticles.

Materials and methods: Ropinirole hydrochloride (RH)-loaded chitosan nanoparticles (CSNPs) were prepared by an ionic gelation method. The RH-CSNPs were characterized for particle size, polydispersity index (PDI), zeta potential, loading capacity, entrapment efficiency in vitro release study, and in vivo distribution after intranasal administration.

Results and discussion: The RH-CSNPs showed sustained release profiles for up to 18?h. The RH concentrations (% Radioactivity/g) in the brain following intranasal administration (i.n.) of RH-CSNPs were found to be significantly higher at all the time points compared with RH solution. The concentration of RH was highest in the liver (7.210?±?0.52), followed by kidneys (6.862?±?0.62), intestine (4.862?±?0.45), and lungs (4.640?±?0.92) in rats following i.n. administration of RH-CSNPs. Gamma scintigraphy imaging in rats was performed to ascertain the localization of drug in the brain following intranasal administration of formulations. The brain/blood ratios obtained (0.251?±?0.09 and 0.386?±?0.57 of RH (i.n.) and RH-CSNPs (i.n.), respectively) at 0.5?h are indicative of direct nose to brain transport, bypassing the blood–brain barrier (BBB).

Conclusion: The novel formulation showed the superiority of nose to brain delivery of RH using mucoadhesive nanoparticles compared with other delivery routes reported earlier.  相似文献   

4.
The present work aimed to develop and characterize sustained release cuboidal lipid polymeric nanoparticles (LPN) of rosuvastatin calcium (ROS) by solvent emulsification-evaporation process. A three factor, two level (23) full-factorial design was applied to study the effect of independent variables, i.e. amount of lipid, surfactant and polymer on dependent variables, i.e. percent entrapment efficiency and particle size. Optimized formulations were further studied for zeta potential, TEM, in vitro drug release and ex vivo intestinal permeability. Cuboidal nanoparticles exhibited average particle size 61.37?±?3.95?nm, entrapment efficiency 86.77?±?1.27% and zeta potential ?6.72?±?3.25?mV. Nanoparticles were lyophilized to improve physical stability and obtain free-flowing powder. Effect of type and concentration of cryoprotectant required to lyophilize nanoparticles was optimized using freeze-thaw cycles. Mannitol as cryoprotectant in concentration of 5-8% w/v was found to be optimal providing zeta potential ?20.4?±?4.63?mV. Lyophilized nanoparticles were characterized using FTIR, DSC, XRD and SEM. Absence of C=C and C–F aromatic stretch at 1548 and 1197?cm?1, respectively, in LPN indicated coating of drug by lipid and polymer. In vitro diffusion of ROS using dialysis bag showed pH-independent sustained release of ROS from LPN in comparison to drug suspension. Intestinal permeability by non-everted gut sac model showed prolonged release of ROS from LPN owing to adhesion of polymer to mucus layer. In vivo absorption of ROS from LPN resulted in 3.95-fold increase in AUC0–last and 7.87-fold increase in mean residence time compared to drug suspension. Furthermore modified tyloxapol-induced rat model demonstrated the potential of ROS-loaded LPN in reducing elevated lipid profile.  相似文献   

5.
Purpose: A novel brain targeting drug delivery system based on OX26 antibody conjugation on PEGylated cationic solid lipid nanoparticles (OX26-PEG-CSLN) was prepared.

Methods: The Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody (OX26-PEG-CSLN) were prepared by emulsion evaporation–solidification at low temperature method. The immune-gold labeled OX26-PEG-CSLN was visualized by transmission electron microscopy. The mean diameter and zeta potential of OX26-PEG-CSLN, PEG-CSLN and CSLN were determined using a Zetasizer. The entrapment efficiency of OX26-PEG-CSLN, PEG-CSLN and CSLN was determined by ultrafiltration centrifugation method. And the solid-state characterization of OX26-PEG-CSLN and CSLN were analyzed by X-ray. Pharmacokinetics studies were conducted by in vivo microdialysis in rat cerebrospinal fluid.

Results: The results showed that the OX26-PEG-CSLN, PEG-CSLN and CSLN had average diameters of 47.68?±?1.65, 27.20?±?1.70 and 33.89?±?5.74?nm, Zeta potentials of ?0.533?±?0.115?mV, 11.200?±?0.500?mV and 11.080?±?1.170?mV and entrapment efficiencies of 83.03?±?0.01%, 92.90?±?3.50% and 97.83?±?0.19%, respectively. In the pharmacokinetics studies, the AUC value of OX26-PEG-CSLN was11.08-fold higher than that of the Baicalin solution (SOL) (p?p?>?0.05); the Cmax value of OX26-PEG-CSLN was 7.88-fold higher than that of SOL (p?p?Conclusion: These results demonstrated OX26-PEG-CSLN could be a promising carrier to deliver drugs across the BBB for the treatment of brain diseases.  相似文献   

6.
Objective: This work deals with the preparation, characterization and in vitro release study of IBU-loaded gel graft copolymer nanoparticles.

Method: Gelatin (Gel) graft copolymer nanoparticles were prepared using styrene (Sty) and/or 2-hydroxyethyl methacrylate (HEMA) monomers in the presence of potassium persulfate and glutaraldehyde as an initiator and cross-linker, respectively. The prepared nanoparticles as sustained release drug carriers were investigated using the nonsteriodal anti-inflammatory model drug, ibuprofen (IBU).

Results: The prepared nanoparticles as sustained release drug carriers were investigated using the nonsteriodal anti-inflammatory model drug, IBU. The prepared Gel/HEMA and Gel/Sty nanoparticles exhibited particles size ranging from 15 to 17?nm and from 0.42 to 5?mm, respectively. The dissolution of IBU in phosphate buffer, pH 7.4, at 37°C from the prepared nanoparticles was evaluated using UV spectroscopy. In addition, the prepared nanoparticles were characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), transmitting electron microscope (TEM) and zeta potential/particle size analyzer. In vitro dissolution study showed that the dissolution rates of the crosslinked nanoparticles were retarded relative to the uncrosslinked ones. Moreover, the released amount constantly decreases with increasing gluteraldehyde content in the gel nanoparticles.

Conclusion: Crosslinked gel-based graft copolymers exhibited slow IBU release within six hours. Furthermore, results from different characterization techniques such as TEM, particles size and zeta potential measurements confirmed the formation of pH-responsive gel-graft copolymer nanoparticles.  相似文献   

7.
In this study, tetrandrine-loaded cationic solid lipid nanoparticles (TET-CNP) and solid lipid nanoparticles (TET-NP) were prepared by the emulsion evaporation-solidification at low temperature method. The particle size, zeta potential, and entrapment efficiency of TET-CNP and TET-NP were characterized. The results showed that the TET-CNP and TET-NP had average diameters of (15.29?±?1.34) nm and (18.77?±?1.23) nm with zeta potentials of (5.11?±?1.03) mV and (?8.71?±??1.23) mV and entrapment efficiencies of (94.1?±?2.37)% and (95.6?±?2.43)%, respectively. In vitro release studies indicated that the TET-CNP and TET-NP retained the drug entity better than tetrandrine ophthalmic solutions (TET-SOL). In the pharmacokinetics studies, the AUC values of TET-CNP and TET-NP were 1.96-fold and 2.00-fold higher than that of TET-SOL (?p?Cmax values of TET-CNP and TET-NP were 2.45-fold and 2.53-fold higher than that of the TET-SOL (p?相似文献   

8.
Objective: The present study discusses paclitaxel (PTX)-loaded mannosylated-DSPE (Distearoyl-phosphatidyl-ethanolamine) solid lipid nanoparticles (M-SLNs) using mannose as a lectin receptor ligand conjugate for lung cancer targeting and to increase the anticancer activity of PTX against A549 lung’s epithelial cancer cells.

Materials and methods: The PTX-SLNs were prepared by solvent injection method and mannose was conjugated to the free amine group of stearylamine. The M-SLNs obtained were characterized for their particle size, polydispersity index, zeta potential and morphology by transmission electron microscope.

Results: The M-SLNs were spherical in shape with 254?±?2.3?nm average size, positive zeta potential (3.27?mV), 79.4?±?1.6 drug entrapment efficiency and showed the lower extent of drug release 40% over 48?h in vitro. Cytotoxicity study on A549 cell lines and biodistrubtion study of drug revealed that M-SLNs deliver a higher concentration of PTX as compared to PTX-SLNs in an alveolar cell site.

Discussion and conclusion: These results suggested that mannosylated M-SLNs are safe and potential vector for lung cancer targeting.  相似文献   

9.
Purpose: Zaleplon (ZL) is a hypnotic drug prescribed for the management of insomnia and convulsions. The oral bioavailability of ZL was low (~30%) owing to poor water solubility and hepatic first-pass metabolism. The cornerstone of this investigation is to develop and optimize solid lipid nanoparticles (SLNs) of ZL with the aid of Box–Behnken design (BBD) to improve the oral bioavailability.

Methods: A design space with three formulation variables at three levels were evaluated in BBD. Amount of lipid (A1), amount of surfactant (A2) and concentration of co-surfactant (%) (A3) were selected as independent variables, whereas, particle size (B1), entrapment efficiency (B2) and zeta potential (ZP, B3) as responses. ZL-SLNs were prepared by hot homogenization with ultrasonication method and evaluated for responses to obtain optimized formulation. Morphology of nanoparticles was observed under SEM. DSC and XRD studies were examined to understand the native crystalline behavior of drug in SLN formulations. Further, in vivo studies were performed in Wistar rats.

Results: The optimized formulation with 132.89?mg of lipid, 106.7?mg of surfactant and 0.2% w/v of co-surfactant ensued in the nanoparticles with 219.9?±?3.7?nm of size, ?25.66?±?2.83?mV surface charge and 86.83?±?2.65% of entrapment efficiency. SEM studies confirmed the spherical shape of SLN formulations. The DSC and XRD studies revealed the transformation of crystalline drug to amorphous form in SLN formulation. In conclusion, in vivo studies in male Wistar rats demonstrated an improvement in the oral bioavailability of ZL from SLN over control ZL suspension.

Conclusions: The enhancement in the oral bioavailability of ZL from SLNs, developed with the aid of BBD, explicated the potential of lipid-based nanoparticles as a potential carrier in improving the oral delivery of this poorly soluble drug.  相似文献   

10.
Abstract

Objectives: The aim of the study was to deliver effective doses of quercetin (Que) to the lower region of hair follicles (HFs) using the transfollicular route through dipalmotylphosphatidylcholine (DPPC)-reinforced poly lactide-co- glycolide nanoparticles (DPPC-PLGA hybrid NPs) for the treatment of alopecia.

Method: PLGA and DPPC-PLGA hybrid NPs were prepared by double-emulsification solvent evaporation method. NPs were characterized for size, shape, zeta potential entrapment and drug release. Drug-polymer interactions were determined by infrared spectroscopy (Fourier transform infrared spectroscopy, FTIR) and differential scanning calorimetry (DSC). Follicular uptake of fluorescent marker tagged NPs was assessed on isolated rat skin by fluorescent microscopy. Potential of hybrid NPs to induce hair regrowth was tested on testosterone-induced alopecia in rat models by visual inspection, hair follicular density measurement (no./mm), and histological skin tissue section studies.

Key findings: Hybrid NPs had mean vesicles size 339?±?1.6, zeta potential –32.6?±?0.51, and entrapment efficiency 78?±?5.5. Cumulative drug release after 12?h was found to be 47.27?±?0.79%. FTIR and DSC confirmed that drug was independently dispersed in the amorphous form in the polymer. Data from fluorescence microscopy suggested that NPs were actively taken up by HFs. In-vivo studies on alopecia-induced rat models showed that hybrid NPs improved hair regrowth potential of Que and accumulation of NPs at HFs end region inhibit HFs cells apoptosis.

Conclusion: This study concludes that phospholipid–polymer hybrid NPs could be the promising transfollicular delivery system for Que in the treatment of androgenic alopecia management.  相似文献   

11.
Objective: The purpose of this research study was to develop, optimize, and characterize dasatinib loaded polyethylene glycol (PEG) stabilized chitosan capped gold nanoparticles (DSB-PEG-Ch-GNPs).

Methods: Gold (III) chloride hydrate was reduced with chitosan and the resulting nanoparticles were coated with thiol-terminated PEG and loaded with dasatinib (DSB). Plackett–Burman design (PBD) followed by Box–Behnken experimental design (BBD) were employed to optimize the process parameters. Polynomial equations, contour, and 3D response surface plots were generated to relate the factors and responses. The optimized DSB-PEG-Ch-GNPs were characterized by FTIR, XRD, HR-SEM, EDX, TEM, SAED, AFM, DLS, and ZP.

Results: The results of the optimized DSB-PEG-Ch-GNPs showed particle size (PS) of 24.39?±?1.82?nm, apparent drug content (ADC) of 72.06?±?0.86%, and zeta potential (ZP) of ?13.91?±?1.21?mV. The responses observed and the predicted values of the optimized process were found to be close. The shape and surface morphology studies showed that the resulting DSB-PEG-Ch-GNPs were spherical and smooth. The stability and in vitro drug release studies confirmed that the optimized formulation was stable at different conditions of storage and exhibited a sustained drug release of the drug of up to 76% in 48?h and followed Korsmeyer–Peppas release kinetic model.

Conclusions: A process for preparing gold nanoparticles using chitosan, anchoring PEG to the particle surface, and entrapping dasatinib in the chitosan-PEG surface corona was optimized.  相似文献   

12.
Furanodiene (FN) loaded FA-PEG2000-DSPE modified nanostructured lipid carriers (FA-FN-NLCs) were developed to increase the solubility and bioavailability of FN, prolong the circulation time in blood and improve the targeting ability. FA-FN-NLCs were prepared using emulsification-ultrasonic and low temperature-solidification method and optimized by central composition design (CCD). In vitro and in vivo characteristics of FA-FN-NLCs were investigated in detail. The optimized formulations exhibited a spherical shape with particle size of 127.4?±?2.62?nm, PDI of 0.268?±?0.04, zeta potential of –14.7?±?1.08?mV, high encapsulation efficiency of 89.04?±?2.26% and loading capacity of 8.46?±?0.20%. Differential scanning calorimetry (DSC) indicated that FN was not in crystalline state in FA-FN-NLCs. In vitro drug release exhibited a biphasic release pattern which showed a relative burst drug release at the initial time and followed by a prolonged drug release. In vivo, compared with FN solution (FN-SOL) and FN loaded traditional NLCs (FN-NLCs), FA-FN-NLCs had a longer blood circulating time (t1/2) and higher area under the curve (AUC). NiR fluorescence imaging study demonstrated that FA-FN-NLCs specially accumulated in tumor site by the receptor-mediated endocytosis. This study showed that FA-FN-NLCs was a promising drug delivery system for FN in the treatment of cancer.  相似文献   

13.
Objective: The aim of this study was the preparation of a self nano-emulsifying drug delivery system (SNEDDS) for oral delivery of heparin.

Significance: Preparation of hydrophobic complexes between heparin as the hydrophilic macromolecule and cationic polymer of β-cyclodextrin (CPβCD) was considered for preparation of orally administered SNEDDS in which the drug incorporated in internal oil phase of O/W nano-droplets.

Methods: Hydrophobic complexes of heparin-CPβCD were prepared by electrostatic interaction. The lipophilic feature of complexes was characterized by determining their partition co-efficients. SNEDDS prototypes were prepared by mixing liquid paraffin, Tween 80, propylene glycol and ethanol, diluted 1:100 in an aqueous medium. Central composite response surface methodology was applied for statistical optimization. Independent variables were the amount of liquid paraffin and the amount of Tween 80, while responses were size and poly dispersity index (PdI). Optimized SNEDDS were studied morphologically using transmission electron microscopy (TEM). In vitro release of heparin was studied in the simulated gastric and simulated intestinal media.

Results: The data revealed that in molar ratio 1:3 (heparin:CPβCD), the n-octanol recovery was maximized and reached 67.6?±?11.86%. Size, PdI, zeta potential, EE% in gastric medium and EE% in intestinal medium for optimized nano-droplets were reported as 307?±?30.51?nm, 0.236?±?0.02,?+2.1?±?0.66?mV, 90.2?±?0.04 and 96.1?±?0.73%, respectively. Microscopic images revealed spherical nano-droplets. The obtained data revealed no burst release of heparin from nano-droplets.

Conclusions: The obtained results indicate that SNEDDS could be regarded as a good candidate for oral delivery of heparin as the hydrophilic macromolecule.  相似文献   

14.
Context: Lipid-polymer hybrid nanoparticles (LPNPs) are polymeric nanoparticles enveloped by lipid layers, which have emerged as a potent therapeutic nanocarrier alternative to liposomes and polymeric nanoparticles.

Objective: The aim of this work was to develop, characterize and evaluate LPNPs to deliver a model protein, lysozyme.

Materials and methods: Lysozyme-loaded LPNPs were prepared by using the modified w/o/w double-emulsion-solvent-evaporation method. Poly-?-caprolactone (PCL) was used as polymeric core material and tripalmitin:lechitin mixture was used to form a lipid shell around the LPNPs. LPNPs were evaluated for particle size distribution, zeta potential, morphology, encapsulation efficiency, in vitro drug release, stability and cytotoxicity.

Results: The DLS measurement results showed that the particle size of LPNPs ranged from 58.04?±?1.95?nm to 2009.00?±?0.52?nm. The AFM and TEM images of LPNPs demonstrate that LPNPs are spherical in shape. The protein-loading capacity of LPNPs ranged from 5.81% to 60.32%, depending on the formulation parameters. LPNPs displayed a biphasic drug release pattern with a burst release within 1?h, followed by sustained release afterward. Colloidal stability results of LPNPs in different media showed that particle size and zeta potential values of particles did not change significantly in all media except of FBS 100% for 120?h. Finally, the results of a cellular uptake study showed that LPNPs were significantly taken up by 83.3% in L929 cells.

Conclusion: We concluded that the LPNPs prepared with PCL as polymeric core material and tripalmitin:lechitin mixture as lipid shell should be a promising choice for protein delivery.  相似文献   

15.
Despite the ongoing extensive research, cancer therapeutics still remains an area with unmet needs which is hampered by shortfall in the development of newer medicines. The present study discusses a nano-based combinational approach for treating solid tumor. Dual-loaded nanoparticles encapsulating gemcitabine HCl (GM) and simvastatin (SV) were fabricated by double emulsion solvent evaporation method and optimized. Optimized nanoparticles showed a particle size of 258?±?2.4?nm, polydispersity index of 0.32?±?0.052, and zeta potential of ?12.5?mV. The size and the morphology of the particles wee further confirmed by transmission electron microscopy (TEM) and scanning electron microscopy, respectively of the particles. The entrapment efficiency of GM and SV in the nanoparticles was 38.5?±?4.5% and 72.2?±?5.6%, respectively. The in vitro release profile was studied for 60?h and showed Higuchi release pattern. The cell toxicity was done using MTT assay and lower IC50 was obtained with the nanoparticles as compared to the pure drug. The bioavailability of GM and SV in PLGA nanoparticles was enhanced by 1.4-fold and 1.3-fold respectively, compared to drug solution. The results revealed that co-delivery of GM and SV could be used for its oral delivery for the effective treatment of pancreatic cancer.  相似文献   

16.
Betamethsone valerate (BMV), a medium potency topical corticosteroid, is one of the most commonly employed pharmacological agents for the management of atopic dermatitis in both adults and children. Despite having remarkable pharmacological efficacy, these agents have limited clinical implication due to poor penetration across the startum cornum (SC). To mitigate issues related to targeted delivery, stability, and solubility as well as to potentiate therapeutic and clinical implication, the nanodelivery systems have gained remarkable recognition. Therefore, this study was aimed to encapsulate BMV into the chitosan nanoparticles (CS-NPs) for optimum dermal targeting and improved penetration across the SC. The prepared NPs were characterized for particle size, zeta potential, polydispersity index, entrapment efficiency, loading capacity, crystallinity, thermal behavior, morphology, in vitro release kinetics, drug permeation across the SC, and percentage of drug retained into various skin layers. Results showed that optimized BMV-CS-NPs exhibited optimum physicochemical characteristics including small particle size (< 250?±?28?nm), higher zeta potential (+58?±?8?mV), and high entrapment efficiency (86?±?5.6%) and loading capacity (34?±?7.2%). The in vitro release study revealed that BMV-CS-NPs displayed Fickian-diffusion type mechanism of release in simulated skin surface (pH 5.5). Drug permeation efficiency and the amount of BMV retained into the epidermis and the dermis were comparatively higher in case of BMV-CS-NPs compared to BMV solution. Conclusively, we anticipated that BMV-CS-NPs could be a promising nanodelivery system for efficient dermal targeting of BMV and improved anti-AD efficacy.  相似文献   

17.
Objective: The conventional liposomal amphotericin B causes many unwanted side effects like blood disorder, nephrotoxicity, dose-dependent side effects, highly variable oral absorption and formulation-related instability. The objective of the present investigation was to develop cost-effective nanoemulsion as nanocarreir for enhanced and sustained delivery of amphotericin B into the skin.

Methods and characterizations: Different oil-in-water nanoemulsions were developed by varying the composition of hydrophilic (Tween® 80) surfactants and co-surfactant by the spontaneous titration method. The developed formulation were characterized, optimized, evaluated and compared for the skin permeation with commercial formulation (fungisome 0.01% w/w). Optimized formulations loaded with amphotericin B were screened using varied concentrations of surfactants and co-surfactants as decided by the ternary phase diagram.

Results and discussion: The maximum % transmittance obtained were 96.9?±?1.0%, 95.9?±?3.0% and 93.7?±?1.2% for the optimized formulations F-I, F-III and F-VI, respectively. These optimized nanoemulsions were subjected to thermodynamic stability study to get the most stable nanoemulsions (F-I). The results of the particle size and zeta potential value were found to be 67.32?±?0.8 nm and –3.7?±?1.2?mV for the final optimized nanoemulsion F-I supporting transparency and stable nanoemulsion for better skin permeation. The steady state transdermal flux for the formulations was observed between 5.89?±?2.06 and 18.02?±?4.3?µg/cm2/h whereas the maximum enhancement ratio were found 1.85- and 3.0-fold higher than fungisome and drug solution, respectively, for F-I. The results of the skin deposition study suggests that 231.37?±?3.6?µg/cm2 drug deposited from optimized nanoemulsion F-I and 2.11-fold higher enhancement ratio as compared to fungisome. Optimized surfactants and co-surfactant combination-mediated transport of the drug through the skin was also tried and the results were shown to have facilitated drug permeation and skin perturbation (SEM).

Conclusion: The combined results suggested that amphotericin B nanoemulsion could be a better option for localized topical drug delivery and have greater potential as an effective, efficient and safe approach.  相似文献   

18.
Traditional vaginal preparations reside in the vaginal cavity for relatively a short period of time, requiring multiple doses in order to attain the desired therapeutic effect. Therefore, mucoadhesive systems appear to be appropriate to prolong the residence time in the vaginal cavity. In the current study, mucoadhesive nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) intended for vaginal delivery of glycyrrhizic acid (GA) (a drug with well-known antiviral properties) were prepared and characterized. Nanoparticles were generated by a solvent displacement method. Incorporation of GA was performed during nanoprecipitation, followed by adsorption of drug once nanoparticles were formed. The prepared nanoparticles were characterized in terms of size, Z-potential, morphology, drug loading, interaction of GA with PVM/MA (by differential scanning calorimetry) and the in vitro interaction of nanoparticles with pig mucin (at two pH values, 3.6 and 5; with and without GA adsorbed). The preparation method led to nanoparticles of a mean diameter of 198.5?±?24.3?nm, zeta potential of ?44.8?±?2.8?mV and drug loading of 15.07?±?0.86?µg/mg polymer. The highest mucin interaction resulted at pH 3.6 for nanoparticles without GA adsorbed. The data obtained suggest the promise of using mucoadhesive nanoparticles of PVM/MA for intravaginal delivery of GA.  相似文献   

19.
Objective: The aim of the present study was to assess the in vitro antimicrobial activities of nanoliposomal formulations loaded with vancomycin or/and rifampin against the biofilm formed by Staphylococcus epidermidis at 37?°C under aerobic condition.

Materials and methods: Liposomal formulations were prepared by dehydration-rehydration (DRV) method and characterized for size, zeta potential and encapsulation efficacy. The ability of different formulations on eradication of bacterial biofilm was assessed through optical density ratio (ODr) and the results implicate higher survival rates of S. epidermidis on biofilm. Positive control was defined as an ODr?=?1.0.

Results: The zeta potential of anionic, cationic and PEGylated liposomes was ?35?±?2, 35?±?1 and 27?±?2?mV whereas the mean sizes of these liposomal formulations were 145?±?4, 134?±?1 and 142?±?6?nm, respectively. Encapsulation efficacy of rifampin and vancomycin was more than 60% and about 25%, respectively. Cationic liposomal rifampin lowered the ODr to 0.61 and was the most effective formulations against S. epidermidis biofilm (p?Conclusion: The results of this study showed that rifampin-loaded liposomes were effective against bacterial biofilm.  相似文献   

20.
Abstract

Objective: Complexation was investigated as an approach to enhance the entrapment of the cationic neurotherapeutic drug, galantamine hydrobromide (GH) into cationic chitosan nanoparticles (CS-NPs) for Alzheimer’s disease management intranasally. Biodegradable CS-NPs were selected due to their low production cost and simple preparation. The effects of complexation on CS-NPs physicochemical properties and uptake in rat brain were examined.

Methods: Placebo CS-NPs were prepared by ionic gelation, and the parameters affecting their physicochemical properties were screened. The complex formed between GH and chitosan was detected by the FT-IR study. GH/chitosan complex nanoparticles (GH-CX-NPs) were prepared by ionic gelation, and characterized in terms of particle size, zeta potential, entrapment efficiency, in vitro release and stability for 4 and 25?°C for 3 months. Both placebo CS-NPs and GH-CX-NPs were visualized by transmission electron microscopy. Rhodamine-labeled GH-CX-NPs were prepared, administered to male Wistar rats intranasally, and their delivery to different brain regions was detected 1?h after administration using fluorescence microscopy and software-aided image processing.

Results: Optimized placebo CS-NPs and GH-CX-NPs had a diameter 182 and 190?nm, and a zeta potential of +40.4 and +31.6?mV, respectively. GH encapsulation efficiency and loading capacity were 23.34 and 9.86%, respectively. GH/chitosan complexation prolonged GH release (58.07%?±?6.67 after 72?h), improved formulation stability at 4?°C in terms of drug leakage and particle size, and showed insignificant effects on the physicochemical properties of the optimized placebo CS-NPs (p?>?0.05). Rhodamine-labeled GH-CX-NPs were detected in the olfactory bulb, hippocampus, orbitofrontal and parietal cortices.

Conclusion: Complexation is a promising approach to enhance the entrapment of cationic GH into the CS-NPs. It has insignificant effect on the physicochemical properties of CS-NPs. GH-CX-NPs were successfully delivered to different brain regions shortly after intranasal administration suggesting their potential as a delivery system for Alzheimer’s disease management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号