首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 708 毫秒
1.
混合型纳米电极材料的合理设计及合成对于其不同的应用具有重要意义,尤其是对于可用于下一代电动汽车和电子设备供电的高效纳米结构超级电容器(SCs)储能器件.本文报道了一种简便可控合成核-壳Ni3S2@NiWO4纳米阵列的方法,并将其用于混合超级电容器的独立电极.在5 mA cm-2的条件下,所制备的Ni3S2@NiWO4独立电极表现出高达2032μA h cm-2的面积容量;即使电流密度增至50 mA cm-2,其容量保留率仍为63.6%.更重要的是,在功率密度为3.128 mW cm-2时,该Ni3S2@NiWO4纳米阵列混合超级电容器仍表现出1.283 mW h cm-2的最大能量密度;而在能量密度为0.753 mW h cm-2时,该超级电容器表现出的最大功率密度为41.105 mW cm-2.此外,该混合超级电容器在连续10,000次循环后仍能保持89.6%的原始容量,从而进一步证明其优异的稳定性.本研究为合理设计各种核壳金属纳米结构提供了便捷途径,有助于促进其在高性能储能器件领域的广泛应用.  相似文献   

2.
采用水热法将石墨烯生长到泡沫镍上,获得泡沫镍@石墨烯水凝胶基底材料(NF@GH),再以十六烷基三甲基溴化铵(CTAB)为导向剂,在120℃下水热反应后得到NF@GH@NiCoLDH。并研究了石墨烯水凝胶对NF@GH@NiCoLDH复合材料电化学性能的影响。1 mA cm-2电流密度下NF@GH@NiCoLDH的比容量可达3658 mF cm-2,15 mA cm-2时的比容量保持率为67.5%,高于NF@NiCoLDH(58%);10000次循环后的容量保持率为62%(15 mA cm-2),具有较好的循环稳定性和倍率性能。以NF@GH@NiCoLDH为正极材料组装的不对称超级电容器比容量为909 mF cm-2(1 mA cm-2),器件的最高能量密度为0.25 mWh cm-2(功率密度为0.7 mW cm-2)。  相似文献   

3.
微型超级电容器(MSCs)具有高的功率密度和卓越的循环性能,广泛的潜在应用,因而受到诸多关注。然而,制备具有高表面电容和能量密度的MSCs电极仍然存在挑战。本研究使用还原石墨烯气凝胶(GA)和二硫化钼(MoS2)作为材料,结合3D打印和表面修饰方法成功构建了具有超高表面电容和能量密度的MSCs电极。通过3D打印技术,获得具有稳定宏观结构和GA交联微孔结构的电极。此外,采用溶液法在3D打印电极表面加载MoS2纳米片,进一步提高了材料的电化学性能。具体而言,电极的表面电容达3.99 F cm-2,功率密度为194μW cm-2,能量密度为1 997 mWh cm-2,表现出卓越的电化学性能和循环稳定性。这项研究为制备具有高表面电容和高能量密度的微型超级电容器电极提供了一种简单高效的方法,在MSCs电极领域具有重要的参考意义。  相似文献   

4.
MXene材料具有组分灵活可调、电容量较高等优势在超级电容器储能领域备受关注。采用电化学法制得聚3, 4-乙烯二氧噻吩/Nb2CTx MXene (PEDOT/MXene)复合电极材料。结果表明,在扫描速率为30 mV·s-1时,PEDOT/MXene的面积比电容可达250.21 mF·cm-2,当电流密度从0.1 mA·cm-2增加到5 mA·cm-2时,PEDOT/MXene的面积比电容保持率为83.5%,远优于PEDOT的64.1%,并且在100 mV·s-1的扫描速率下循环测试1 000次后初始电容保持率可达84%,表现出良好的倍率性能和稳定性。工作为基于MXene基材料构筑高性能电化学储能界面提供了一定的借鉴。  相似文献   

5.
在乙醇胺和水组成的混合溶剂中, Mn(Ac)2与氧化石墨烯一步反应得到还原石墨烯(RGO)与黑锰矿纳米颗粒(Mn3O4)组成的复合材料Mn3O4@RGO。以Mn3O4@RGO为正极, RGO为负极, 组装得到了具有优良储能性能的非对称型超级电容器Mn3O4@RGO//RGO。基于活性物质的总质量, 电容器的最大能量密度可达21.7 Wh/kg, 相应的功率密度为0.5 kW/kg; 同时, 最大功率密度为8 kW/kg时, 对应的能量密度为11.1 Wh/kg。Mn3O4@RGO//RGO还表现出良好的循环稳定性, 在经历5000次循环后, 比电容依然保持88.4%。电容器的良好储能性能可归因于在RGO表面生长的高密度Mn3O4纳米颗粒和RGO的良好导电性能。  相似文献   

6.
采用两步界面组装法制备石墨烯/MnO2纳米片(GMTF)三维复合薄膜电极,研究了复合薄膜的电化学性能。结果表明,MnO2的赝电容和石墨烯的双电层电容相互协调,使得GMTF复合薄膜材料比单一的MnO2纳米片或者石墨烯材料具有更佳的电化学性能。在三电极体系中,GMTF电极的比电容在5mV/s时达156.54mF/cm2,远高于石墨烯(40.24mF/cm2)和MnO2纳米片(69.03mF/cm2)。此外,在两电极体系中,基于GMTF复合薄膜的固态超级电容器也显示出较高的面积比电容(120.49mF/cm2)和质量比电容(204.22F/g)、优良的循环性能。在功率密度为39mW/cm3时,能量密度能够达到1.735mWh/cm3。  相似文献   

7.
为了提高超级电容器的性能, 尽可能减少环境污染, 电极材料尤其是低成本、高能量密度的环保型电极材料受到人们越来越多的关注。本研究采用水热法制备了Bi2WO6/CNOs (CNOs, 纳米洋葱碳)和Bi2WO6纳米材料。采用扫描电子显微镜(SEM)和X射线晶体衍射(XRD)对产物的形貌、结构进行分析, 并通过循环伏安法、恒电流充放电测试、交流阻抗对材料的电化学性能进行评价。结果表明, 以1 mol·L-1 KOH为电解液, 电流密度为2 mA·cm-2时, Bi2WO6/CNOs与纯相Bi2WO6的比电容分别为328和218 F·g-1; 电流密度为5 mA·cm-2时, 经过300次循环, Bi2WO6/CNOs的比容量保持率比纯相Bi2WO6提高了34.37%。可见, 在Bi2WO6中加入CNOs能明显改善Bi2WO6的电化学性能。  相似文献   

8.
通过水热法在泡沫镍上成功制备了纳米结构的NiCo2S4薄膜, 主要包括前驱体制备及硫化过程。研究表明, 制备过程中添加不同种类的表面活性剂会对NiCo2S4薄膜的形貌、结构和电化学性能产生影响。添加表面活性剂后, NiCo2S4会自组装逐渐形成三维纳米片网状结构。在所有的NiCo2S4薄膜中, 添加SDS表面活性剂的薄膜表现出最高的比电容(在0.5 A/g电流密度下达到2893 F/g)、出色的倍率特性(在10 A/g电流密度下达到1890.6 F/g)和良好的循环稳定性(1000次循环后保持率为96.1%)。研究结果表明纳米网状的NiCo2S4是一种极具潜力的超级电容器电极材料。  相似文献   

9.
通过一步水热法制备组氨酸功能化碳点/石墨烯气凝胶(His-CDs/GA)。该材料具有独特的三维多孔结构、丰富的含氮和含氧官能团, 有利于电解液离子的快速扩散和提供更多的活性位点。当GO与His-CDs的质量比为2 : 1时, His-CDs/GA-2在1 A·g -1电流密度下比电容达到304 F·g - 1, 比GA(172 F·g -1)提高了76.7%; 当电流密度从1 A·g -1增加到50 A·g -1, 其比电容保持率为71.4%; 在电流密度10 A·g -1下, 循环充放电30000次后, 比电容仍保留93.5%。由His-CDs/GA组装的对称超级电容器展现出高能量密度(在功率密度为250 W/kg时, 能量密度达到10.14 Wh/kg)和良好的循环性能(在5 A·g -1下循环充放电20000次后, 比电容保持率为88.4%)。结果表明, His-CDs/GA是一种应用前景广阔的超级电容器电极材料。  相似文献   

10.
采用电沉积技术将α-Fe2O3均匀负载在静电纺丝炭纳米纤维上,制备α-Fe2O3/炭纳米纤维复合材料。利用扫描电镜(SEM)、X射线衍射仪(XRD)以及物理吸附对复合材料进行形貌和结构分析,并通过恒电流充放电、循环伏安、交流阻抗技术考察其作为超级电容器电极材料的电化学性能。结果表明:α-Fe2O3/炭纳米纤维(α-Fe2O3/CNF-3)复合材料相比单纯炭纳米纤维(CNF)有着更丰富的介孔结构,有利于离子和电子的低电阻传输。同时,α-Fe2O3/CNF-3复合电极材料结合了双电层电容和赝电容的优良性能,在电流密度为1A/g下,电解液为6mol/L KOH时,其比电容值可达330.1F/g,是炭纳米纤维电极的3.76倍,并且经过8000次循环后仍能保持91.45%,具有较好的稳定性。  相似文献   

11.
超级电容器是目前解决“能源短缺”与“环境污染”两大问题的重要手段之一,具有功率密度高、循环寿命长、可快速充放电、环境友好等特点。电极材料是决定超级电容器性能的关键因素。金属硅酸盐来源丰富、理论比容量高、结构可调、性质稳定,是发展低成本超级电容器的杰出候选电极材料,但面临着固有导电性较低、易团聚、循环稳定性不足等问题。因此,提出构建硅藻土基硅酸盐复合材料的思路,用于降低电极材料的生产成本、改善传统复合方式的缺陷。同时,提出利用硅藻土的多孔结构改善纳米材料的团聚问题,以提高硅酸盐电极材料的电化学性能,通过进一步负载导电性较好、氧化还原能力优异的Co3O4,构建多层次金属化合物“壳-核”结构,有助于提高界面活性、增加离子扩散通道、控制电极材料使用过程中的体积膨胀,进一步提升电化学性能。实验结果证明,Co3O4@MnSiO3@硅藻土复合材料是一种形貌结构优良、循环稳定性突出、电化学性能良好、使用寿命长及成本低廉且绿色环保的新型电极材料。改善了硅酸盐电极材料导电性不足、循环稳定性较低等缺...  相似文献   

12.
通过水热法合成了钛羟基磷灰石(TiHAP)与g-C3N4复合光催化剂(TiHAP@g-C3N4),并对其结构和光学特性进行表征,通过甲基橙(MO)降解实验评价其光催化活性。结果表明:样品中短棒状TiHAP生长在g-C3N4表面,均保持原有晶型和化学结构;制备的TiHAP@g-C3N4纯度高,比表面积达107.92 m2/g,较TiHAP、g-C3N4分别增大约135%、44%;在TiHAP@g-C3N4添加量为1.0 g/L、pH 7条件下,120 min内MO降解率达96.35%;3次循环实验降解率保持在80.02%以上,TiHAP@g-C3N4光催化性能良好且结构稳定。空穴(h+)在MO降解过程中作用最大,·O2<...  相似文献   

13.
过渡金属氧化态调控工程是一种很有前景的改善电极材料的氧化还原活性、增加活性位点的策略.本文提出了一种简单的三乙醇胺辅助自模板法,制备了一种由交错钴硫化物纳米片(CoxSy-T NSs)组装而成的独特的三维蜂窝状网络结构.有趣的是,我们首次发现在该体系中,三乙醇胺可以有效地增加目标产物中的高价态Co3+的比例.CoxSy-T NSs电极具有高含量的Co3+和三维网络结构,使得其在5 A g-1的电流密度下表现出351 mA h g-1(2635 F g-1)的最大比容量和优异的循环稳定性.此外,由CoxSy-T NSs和活性炭(AC)电极组装的固态不对称超级电容器在0.81 kW kg-1功率密度下展现出81.62 W h kg-1的高能量密度和卓越的长周期循环稳定性,7000次循环后仍有96.2%的容量保持率.该结果证明同时调控高价态的金属物种并构筑三维网络结构是一种简单而有效的制备用于能源存储与转换的高活性电极材料的策略.  相似文献   

14.
《功能材料》2021,52(5)
高性能超级电容器电极材料的开发对于缓解当前的能源危机势在必行,设计和优化混合过渡金属氧化物并研究电化学性能和循环寿命对于超级电容器的实际应用至关重要。在已开发的混合过渡金属氧化物中,由于电活性材料的导电率差并且与电解质的接触受限制,大大限制了所制备电极的电化学性能。我们在本文中提出了一种合成石墨烯/CoMoO_4纳米片的有利设计,使活性材料均匀生长在三维石墨烯泡沫的网状骨架上,充分提高了活性材料的利用率,其独特的结构也增加了电活性材料与电解质界面之间的接触,使赝电容反应充分发生。由于石墨烯的高电子传输速率和CoMoO_4纳米片的高活性,三维复合电极具有出色的电化学性能,具有相对较高的面积比电容(在1 mA cm~(-2)下为2 737 mF cm~(-2))和出色的循环稳定性(在10 mA cm~(-2)下进行4000次循环后,保留原始比电容的81.76%)。这些出色的结果表明,石墨烯/CoMoO_4纳米片复合材料具有巨大的潜力,可作为高性能超级电容器的电极材料。  相似文献   

15.
柔性超级电容器具有超高的功率密度和超长的循环寿命,结合其结构的灵活性、轻质和形状多样性的特点,在储能领域具有巨大的应用潜力。发展柔性超级电容器首先要解决柔性电极制备的难题。本研究通过激光直写技术结合KOH活化得到高柔性、高导电性的微孔石墨烯基底,即活化的激光诱导石墨烯(a-LIG),然后用电化学沉积法在其上沉积二氧化锰,成功开发出柔性a-LIG/MnO2电极。在1 mol/L的Na2SO4电解质中,当电流密度为1 mA/cm2时,复合aLIG/MnO2电极表现出304.61 mF/cm2的高面积比电容。以a-LIG/MnO2为阳极,a-LIG为阴极,PVA/H3PO4为凝胶电解质,组装了柔性非对称超级电容器,在功率密度为260.28μW/cm2时其面积能量密度为2.61μWh/cm2,在电流密度为0.2 mA/cm2时其面积比...  相似文献   

16.
吴冰  刘磊  王献志  肖潇  杨豹  赵锦涛  古成前  马雷 《材料工程》2022,50(10):102-110
以Li2CO3与锐钛矿型TiO2为原料,六水合硝酸钇(Y(NO33·6H2O)为钇源,采用球磨辅助固相法合成了Li4Ti5-xYxO12x=0,0.05,0.10,0.15,0.20)负极材料。通过X射线衍射分析(XRD)、扫描电镜(SEM)、能谱仪(EDS)与X射线光电子能谱(XPS)分别对材料的物相与形貌进行表征分析,并利用电化学工作站对材料的电化学性能与电荷输运特性进行测试。结果表明,Y3+掺杂没有影响尖晶石型Li4Ti5O12(LTO)材料的尖晶石结构,x=0.15时,Li4Ti4.85Y0.15O12样品的离子与电子电导率分别为2.68×10-7 S·cm-1和1.49×10-9 S·cm-1,比本征材料提升了1个数量级,表现出良好的电荷输运特性。电化学测试表明,Li4Ti4.85Y0.15O12样品在0.1 C倍率首次放电比容量可达171 mAh·g-1,且在10 C与20 C高倍率下仍然拥有102 mAh·g-1和79 mAh·g-1的较高比容量,循环200周次后容量保持率分别为92.6%和89.1%,表现出良好的倍率特性。  相似文献   

17.
阚侃  王珏  付东  郑明明  张晓臣 《材料工程》2022,50(2):94-102
以石墨烯纳米片为骨架,聚吡咯为碳源,设计构建氮掺杂碳纤维包覆石墨烯纳米片(NFGNs)复合材料。采用SEM,XRD,Raman,FTIR,XPS和BET对材料进行表征,结果表明:相互连通的氮掺杂碳纳米纤维均匀地包覆生长在石墨烯纳米片层表面;NFGNs-800复合材料的氮原子分数为11.53%,比表面积为477.65 m2·g-1。电容特性测试结果表明:NFGNs-800电极材料的比电容为323.3 F·g-1(1.0 A·g-1),且具有良好的倍率特性;NFGNs-800超级电容器在功率密度为10500 W·kg-1时,能量密度为87.1 Wh·kg-1;经过10000次恒流充放电循环后,比电容保持率95.9%,库仑效率保持在99%以上。  相似文献   

18.
超级电容器具有充放电速度快、能量密度高、循环稳定性好等优点,而电极材料决定超级电容器的电化学性能。可再生生物质经过高温炭化可制备不同微观结构的碳材料,然而,这些碳材料存在比容量低的缺点;MnO2具有高理论比电容,缺点是循环稳定差。生物质衍生碳与MnO2复合可以实现两者优势互补。首先介绍了生物质衍生碳/MnO2复合材料的制备方法,包括化学法、水热法和电沉积法。然后,按照不同生物质衍生碳的微观结构进行分类,综述了多孔碳/MnO2、碳球/MnO2、碳纤维管/MnO2、碳纳米片/MnO2和三维碳/MnO2复合材料的制备及在超级电容器中的应用性能。最后,总结了综合性能最优的生物质衍生碳/MnO2复合材料,并针对该领域存在的问题提出了其未来发展方向。  相似文献   

19.
Co3O4作为超级电容器材料,因具有理论比容量高、价格成本低、无毒环保、储量丰富等优点而备受关注,但制备出电化学性能优异的Co3O4超级电容器材料仍是个巨大的挑战。通过与导电性突出的碳材料复合,增加了电子/离子的传输速度,提高了Co3O4超级电容器材料电化学性能。综述了Co3O4/碳复合超级电容器材料的合成方法,归纳了各个方法的优缺点,分析了影响Co3O4/碳复合超级电容器电化学性能的因素,最后,指出了Co3O4/碳复合超级电极材料所面临的问题和发展前景。  相似文献   

20.
阴极材料的开发对于可充电水相电池的发展具有重要意义.本文通过自牺牲模板法和碳包覆法相结合制备了碳包覆介孔Fe3O4纳米阵列阴极材料(Fe3O4@C MNAs).得益于包覆碳层、介孔结构和纳米阵列结构的优异特性, Fe3O4@C MNAs电极表现出良好的倍率性能和优秀的循环稳定性.在组装的Ni/Fe电池器件中, Fe3O4@C MNAs表现出较高的能量密度及功率密度(在能量密度为213.3 W h kg-1时功率密度为0.658 kW kg-1和在功率密度为20.7 kW kg-1时能量密度为113.9 W h kg-1)和出色的循环稳定性(约5000次循环后保持81.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号