首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
与传统能量存储设备相比,超级电容器因具备比电容高、充放电快、绿色环保并且循环稳定性能优异等优点,在移动通信、电动汽车、国防和航空航天领域具有广阔的应用前景,已成为世界范围内的研究焦点。其中,超级电容器的电极材料是其性能的决定因素,常见的超级电容器电极材料包括碳材料、过渡金属氧化物和导电聚合物等。不同的电极材料的电荷储存机理不同,过渡金属氧化物具有典型的赝电容行为,依赖可逆的氧化还原反应和化学吸附/脱附过程来储存电荷,理论比电容高。然而,过渡金属氧化物同时存在导电性能差,循环稳定性不佳的缺点。碳材料主要表现双电层电容特性,依靠材料表面和电解质离子间的可逆物理吸附/脱附过程储存电荷,具有优异的倍率性能,符合实际生产和应用中对于超级电容器器件高寿命的要求,但其自身比电容相对较低。与单一属性的材料相比,复合材料往往表现出更加优异的电化学性能,大量的研究表明,过渡金属氧化物与碳材料的复合是解决上述问题的有效途径。碳材料因具有来源丰富、价格低廉、质量轻盈、比表面积高以及热稳定性好与电化学性能稳定等优点,日益受到重视,是构建赝电容电容器电极的首选基底材料。碳材料结构多样,近年来,零维的碳量子点、碳球,一维的碳纳米管、碳纳米纤维,二维的石墨烯、氧化石墨烯,三维的石墨烯泡沫、碳泡沫/海绵等均被成功地用于构建碳基复合电极材料,并取得了丰硕的成果。零维碳纳米材料具有高比表面积,提供了调节多孔性的灵活度,可以获得适合各自电解质溶液的最优化条件。一维碳纳米结构一般具有高长宽比和良好的电子传输性能,可以促进超级电容器电极的电荷转移。二维碳纳米结构具有比表面积大与导电性高、力学性能优良等特点,具备潜在赝电容行为,并且能增强超级电容器电极间的充放电反应动力学。利用三维导电材料作为模板,沉淀赝电容材料,可以构建高性能超级电容器电极。本文概述了不同维度碳材料负载过渡金属氧化物作为赝电容的电极材料及其电容性能,并对电极材料储能方面存在的不足和未来的研究方向做出了总结和展望,以期为制备性能优良、环境友好和高寿命的超级电容器提供参考。  相似文献   

2.
超级电容器具有功率密度高、循环寿命长和安全性高等优点,在储能领域具有巨大的应用前景。如何设计和制备具有优异电容性能的电极材料和电极结构是制备高性能超级电容器的关键。过渡金属氮化物(Mx N,M=Ti,V,Mo,Nb,W)是一类具有开发潜力的优异电化学储能材料。相比碳材料,过渡金属氮化物具有更大的比电容,相比过渡金属氧化物电极材料,过渡金属氮化物表现出更为优异的倍率性能和快速充放电性能。介绍了几种典型的过渡金属氮化物储能材料及其电容特性,利用金属氮化物纳米线高长径比的特征,通过简单真空抽滤的方法,制备了具有良好机械柔性的三维交织的纳米线基薄膜纸电极;结合凝胶电解液,构建了高性能的柔性全固态超级电容器,最后对过渡金属氮化物在超级电容器领域的发展进行了展望。  相似文献   

3.
陈鹏  徐朝阳 《包装工程》2019,40(15):92-97
目的 以纳米纤维素气凝胶为骨架,对苯二酚为增强相,并加入还原氧化石墨烯,制备纳米纤维素/还原氧化石墨烯复合电极薄膜,将其应用于超级电容器。方法 采用超声处理制备纳米纤维素/氧化石墨烯混合溶液;在高温高压的环境下,加入对苯二酚,采用水热合成法和冷冻干燥法制备纳米纤维素/还原氧化石墨烯气凝胶,并最终制成电极膜。结果 在纳米纤维素/还原氧化石墨烯复合气凝胶中,石墨烯可将纳米纤维素均匀包裹,形成三维多孔网络结构;纳米纤维素/还原氧化石墨烯复合电极具有良好的电化学性能,在1 mol/L的H2SO4溶液中,当电流扫描速率为1 mA/cm2时,超级电容器比面积电容高达1.621 F/cm2,且在2000次循环测试后,电容保留率为88.3%。结论 以纳米纤维素为基体制备的纳米纤维素/还原氧化石墨复合电极具有良好的电化学性能,可以用作超级电容器电极。  相似文献   

4.
近年来,便携式和可穿戴电子设备呈现出跨越式发展,为了使可穿戴电子器件更加灵活、轻巧、智能并完全实现产品化,就需进一步探求与之匹配的具有薄、轻、柔特点的储能装置。超级电容器由于具有功率密度高、循环寿命长、机械强度高、安全性好和易于组装等优点,受到研究者的广泛关注。然而,传统的超级电容器一旦受到外力发生变形,储能特性会极大降低甚至丧失。电极材料是电容器的核心部分,因此研制出高柔韧性和储能特性出众的电极材料是有必要的。石墨烯因具有大比表面积,优异的力学、电学性能而成为用于柔性超级电容器的有吸引力的电极材料。赝电容材料可提供高比电容,但其导电性差、稳定性低,因此研究者将石墨烯与赝电容材料相融合作为电极材料,充分发挥各自优势,不仅克服了石墨烯片层间易团聚的缺点,还可提高柔性超级电容器的整体能量密度。由于二维石墨烯片层易堆叠,电子传导能力受到限制,目前更多的研究工作致力于三维多孔网状结构的石墨烯材料。本文突出介绍了石墨烯的两个重要角色:(1)与电化学活性物质复合作为活性材料;(2)作为沉积活性物质的导电柔性基体。因此,功能多样化的石墨烯在制备柔性电极中有很大的潜力。通过化学沉积、浸涂、水热等工艺将具有高电导率的石墨烯直接作为柔性基底,或与赝电容材料键合附着在柔性基体上,制备基于石墨烯的柔性电极材料。本文介绍了超级电容器的储能原理和石墨烯在柔性超级电容器领域的应用状况,着重总结了石墨烯/过渡金属氧化物、石墨烯/导电聚合物复合电极材料在柔性超级电容器方面的研究进展;解析了柔性超级电容器电极材料仍然面临的挑战,并对其未来的发展进行了展望。  相似文献   

5.
滕佑超  魏婧  李大纲 《包装工程》2020,41(19):82-89
目的 制备具有优异电化学性能的石墨烯/纳米纤维素/二氧化锰复合纤维水系超级电容器。方法 采用超声波分散处理制备氧化石墨烯/纳米纤维素/二氧化锰混合纺丝液;运用湿纺纺丝工艺制备氧化石墨烯/纳米纤维素/二氧化锰杂化纤维电极;通过氢碘酸还原和冷冻干燥处理构建具有多孔结构的石墨烯/纳 米纤维素/二氧化锰复合纤维电极;最后,将其组装成两电极水系超级电容器。结果 在石墨烯/纳米纤维素/二氧化锰复合纤维中,纳米纤维素的添加有效抑制了石墨烯片层的自聚集,并显著提升了复合纤维的亲水性和拉伸强度。二氧化锰的加入显著提升了纤维电极的电化学性能。得益于精心的实验设计,石墨烯/纳米纤维素/二氧化锰复合纤维的拉伸强度为338 MPa。组装后的水系超级电容器具有优异的电容性能和循环稳定性,在电流密度为0.1 mA/cm2时,面积电容为412.5 mF/cm2,循环1500次后,电容保持率为87%。结论 将切实可行的湿法纺丝策略与精心设计的电极结构相结合,制备的石墨烯/纳米纤维素/二氧化锰水系超级电容器为可穿戴便携式储能设备和智能包装能源供应系统的发展提供了良好的参考。  相似文献   

6.
采用两步界面组装法制备石墨烯/MnO2纳米片(GMTF)三维复合薄膜电极,研究了复合薄膜的电化学性能。结果表明,MnO2的赝电容和石墨烯的双电层电容相互协调,使得GMTF复合薄膜材料比单一的MnO2纳米片或者石墨烯材料具有更佳的电化学性能。在三电极体系中,GMTF电极的比电容在5mV/s时达156.54mF/cm2,远高于石墨烯(40.24mF/cm2)和MnO2纳米片(69.03mF/cm2)。此外,在两电极体系中,基于GMTF复合薄膜的固态超级电容器也显示出较高的面积比电容(120.49mF/cm2)和质量比电容(204.22F/g)、优良的循环性能。在功率密度为39mW/cm3时,能量密度能够达到1.735mWh/cm3。  相似文献   

7.
随着可穿戴电子器件的发展,新型纤维状超级电容器逐渐成为最新一代储能器件。然而,纤维状超级电容器较低的电导率和较小的比电容限制了其在高能量密度器件中的应用。本工作采用水热法在碳纳米管纤维表面生长锌钴双金属氧化物纳米线森林设计高能量纤维状超级电容器,利用锌钴双金属氧化物和碳纳米管纤维的协同效应显著提高复合纤维的电化学性能。使用聚氯乙烯薄膜和聚乙烯醇/氯化锂凝胶电解质与复合纤维组装全固态纤维状对称超级电容器,并测试其电化学性能。组装的复合纤维比电容达到112.67 mF·cm~(-2),功率密度0.45 mw·cm~(-2)时的能量密度为12.68μwh·cm~(-2)。复合纤维有较好的循环稳定性,以1 mA·cm~(-2)的电流密度进行10 000次循环,其电容保持率为90.63%。此外,在几种不同弯曲角度下,循环伏安曲线的变化可以忽略不计,说明复合纤维具有良好的柔韧性和力学稳定性。全固态纤维状超级电容器的优异性能为便携式和可穿戴电子产品的发展提供了新的机遇。  相似文献   

8.
以氧化石墨烯为原料,通过水热反应和高温焙烧过程制备了三维石墨烯柱状体材料。采用机械力学测试方法分析三维石墨烯的可压缩性能,将其作为超级电容器的电极材料测试其电化学性能。结果表明,三维石墨烯呈多孔网状结构,具有良好的可压缩性能和机械性能。电极片厚度为2 mm,铝塑外包尺寸为5 cm×6 cm的对称超级电容器在电流密度为0.1 A/g下比电容为175 F/g,在电流密度为1 A/g下充放电循环10 000次后比电容保持率为81.9%。在加载不同大小压力压缩状态下,其保持了良好的电容性能。  相似文献   

9.
金属氧化物理论上具有较高的比电容,是赝电容超级电容器的主要电极材料,不同的沉积方法将直接影响到其电化学性能。首先采用阳极氧化法制备高度有序的TiO_2纳米管阵列作为基底,分别采用化学沉积法和电化学沉积法(差分脉冲伏安法)沉积NiO,测试并比较所沉积NiO的电化学性能。电子扫描显微镜表征发现化学沉积的NiO颗粒较大未能均匀沉积,电化学沉积法沉积形成的NiO颗粒较小且均匀附着在纳米管中。恒流充放电结果显示电化学沉积法制备的复合电极获得了60mF/cm~2的比电容,可以用作电化学超级电容器的电极材料。  相似文献   

10.
以石墨粉为原料,通过简便的氧化还原法制备了石墨烯。将石墨烯极片在有机电解液体系中组装成超级电容器。利用XRD、SEM对制备的石墨烯电极进行物相和形貌分析。采用恒电流充放电、循环伏安和交流阻抗对所制备超级电容器的电容性能进行了研究。结果表明,石墨烯电极超级电容器比天然石墨制备的超级电容器的比电容有了明显的提高;在电流密度为200mA/g,电压区间为1.25~2.5V下循环888次后比电容保持在45.5F/g,容量保持率在85.5%,表明石墨烯材料制备的电容器具有较好的充放电循环性能。  相似文献   

11.
超级电容器用石墨烯极片的制备和性能   总被引:1,自引:0,他引:1  
袁美蓉  赵方辉  刘伟强  朱永法  王臣 《功能材料》2013,(19):2810-2813,2818
以石墨粉为原料,通过简便的氧化还原法制备了石墨烯。将石墨烯极片在有机电解液体系中组装成超级电容器。利用XRD、SEM对制备的石墨烯电极进行物相和形貌分析。采用恒电流充放电、循环伏安和交流阻抗对所制备超级电容器的电容性能进行了研究。结果表明,石墨烯电极超级电容器比天然石墨制备的超级电容器的比电容有了明显的提高;在电流密度为200mA/g,电压区间为1.25~2.5V下循环888次后比电容保持在45.5F/g,容量保持率在85.5%,表明石墨烯材料制备的电容器具有较好的充放电循环性能。  相似文献   

12.
三维石墨烯网络(3DGNs)能够缩短电解质离子的扩散距离,提供快速电子输运通道,并能充当骨架以与赝电容材料进行复合,因而在超级电容器中得到了广泛应用。本文主要综述近年来三维石墨烯网络及其复合材料在超级电容器电极材料方面的的进展,论述提升三维石墨烯基超级电容器性能的途径,最后展望了未来三维石墨烯网络的前景。  相似文献   

13.
以西瓜瓜瓤为碳源,采用两步碳化法制备三维石墨烯(3D-Fiberbased Graphene,3D G)材料,并使用水热法制备了CeO_2-MnO/3DG复合材料,以期获得比电容高,循环寿命好的石墨烯超级电容器电极材料。结果表明:3DG材料具有较高比表面积,最高可达到332m~2·g~(-1)。CeO_2-MnO/3DG复合材料具有三维导电网络结构,金属氧化物颗粒在石墨烯片层间生长均匀,粒径在10nm左右。电化学测试结果显示:在0.5 mol·L~(-1)的Na_2SO_4溶液中,电流密度1A·g~(-1),当摩尔比MnO∶CeO_2=4∶1,复合负载量在80%时得到的CeO_2-MnO/3D G复合材料拥有最高比电容,达308.5F·g~(-1),经过1 000次循环充放电测试比电容保持率为95.5%。CeO_2-MnO/3DG复合材料电化学性能的提高主要是因为两种金属氧化物复合负载与石墨烯的协同作用。  相似文献   

14.
近年来,随着可穿戴电子技术的出现,制作出质量轻、灵活性强的电子设备也越来越受到人们的重视,相应具有可穿戴功能的高电化学性能的储能设备也备受关注。其中,超级电容器具有循环寿命长、充放电速度快、功率密度高等优点,是一种很有前途的储能设备。因此,柔性超级电容器的设计和生产被认为是满足先进柔性电子设备需求的最有前途的策略之一。鉴于电极材料是影响超级电容器的性能和生产成本的关键因素,因此开发高性能和低成本的电极材料是超级电容器研究的重要内容。在众多研究的电极材料中,双金属化合物因具有较高的理论比电容、较低的成本,对环境相对友好,耐碱腐蚀等优势而引起研究人员的广泛关注。其中,金属硫化物中硫钴镍是一种典型的双金属硫化物。硫钴镍具有理论容量高、电负性较低、电化学活性高、资源丰富易得、无毒、易制备等特点,因此被广泛用于超级电容器的电极材料。硫钴镍虽然具有较高的理论容量,但目前仍面临以下几个严重问题:(1)硫钴镍导电性差,实际电化学比容量低于理论容量;(2)硫钴镍在充放电过程中存在严重的体积膨胀,使得电容器结构被破坏进而造成电容器循环性能的快速衰减。目前的解决办法一般是通过将硫钴镍与各种碳材料、金属氧化物及导电聚合物复合,改善材料的结构、形貌和导电性,以此提高材料的电化学性能。硫钴镍与金属氧化物、硫钴镍与碳材料复合的电极材料在制成超级电容器的电极极片时需要添加导电剂和粘结剂,这不仅增加了电极的成本,而且也使制作环节变得复杂,更重要的是活性物质的外露面积也会因为粘结剂的使用而减小。现在许多研究将导电活性物质直接生长在集流体上形成自支撑结构,这种结构形式既简化了超级电容器电极的制作流程,又提高了电容器的电化学性能。本研究以Ti片为基底,采用分步水热法先在Ti片表面生长TiO_2纳米带阵列,然后在其上包覆生长NiCo_2S_4纳米片,得到NiCo_2S_4纳米片包覆TiO_2纳米带的核/壳阵列结构。将TiO_2@NiCo_2S_4作为超级电容器无粘结剂和导电剂的电极。三电极测试结果表明:1 A·g~(-1)时TiO_2@NiCo_2S_4电极的比电容达到1 300 F·g~(-1)。此外,将煤基多孔碳(CPC)作为负极,TiO_2@NiCo_2S_4作为正极,组装成了TiO_2@NiCo_2S_4//煤基多孔碳(CPC)不对称超级电容器(ASC)。电化学测试结果表明:TiO_2@NiCo_2S_4//CPC不仅具有较高的能量密度和功率密度(在400 W·kg~(-1)时为41.6 Wh·kg~(-1)),而且具有良好的循环稳定性(在4 A·g~(-1)下循环5 000次后,电容保持率大于80%)。这是由于采用多级阵列式结构的复合电极具有以下优势:(1)比表面积大,增大了活性物质和电解液的接触面积;(2)孔道丰富,减少了电解液离子迁移的距离;(3)避免了使用传统电极制作过程中导电剂和粘结剂,减少了生产成本、缩短了加工时间。这种交织的三维(3D)网络结构和柔性衬底的设计为获得高性能柔性衬底电极材料提供了新方法。  相似文献   

15.
正超级电容器具有功率大、充放电速度快和循环稳定性高等优点,但能量密度低一直是限制其更广泛应用的主要障碍。提高超级电容器能量密度的关键是开发高性能电极材料。以廉价过渡金属氧化物为代表的赝电容材料以其高的理论比电容吸  相似文献   

16.
采用电化学沉积工艺,在MEMS超级电容器的三维结构集流体上制备出聚吡咯(PPy)、聚吡咯/碳纳米管(PPy/CNT)、聚吡咯/石墨烯(PPy/GR)三种类型的膜电极。采用SEM对三种膜电极进行形貌观察,采用循环伏安、交流阻抗、恒电流充放电和循环充放电研究三种膜电极的电化学电容性能。结果表明,复合电极的微观结构稳定,复合薄膜和集流体之间的结合力大;基于三种膜电极的MEMS超级电容器电容量依次增大,阻抗依次减小,放电电流为1 mA时,比电容分别达到7.0、8.0、8.3 mF/cm2,经过5 000次恒流充放电循环后,电容器的比电容分别保持了原来的72.9%、85.0%和89.2%。在PPy电极中引入CNT或GR后,MEMS超级电容器的电化学和膜电极结构稳定性可得到明显改善。  相似文献   

17.
以氧化石墨烯溶液和硝酸镍为原料,采用一步水热法制备了Ni(OH)_2/还原氧化石墨烯(Ni(OH)_2@RGO)复合材料。在Ni(OH)_2/还原氧化石墨烯的研究中,两组分间的配比对复合物的形貌和电化学活性具有显著的影响。在最佳配比下(RGO含量26.7%),Ni(OH)2以纳米带形式担载于石墨烯片相互搭接成的三维网络结构中,从而可暴露更多的活性位点和有效比表面积,利于展现更好的电化学性能。该复合材料用作超级电容器电极材料时,展现了高的比电容(在1 A·g~(-1)下的比电容高达1 804 F·g~(-1)),良好的倍率性能(在25 A·g~(-1)下比电容保持率仍在46%以上),以及优异的循环稳定性(在2 A·g~(-1)下循环2 000次的电容保持率为90.3%)。  相似文献   

18.
作为一种介于传统电容器和电池之间的新型电化学储能器件,超级电容器的整体性能主要受限于电极材料。研究发现,具有赝电容特性的过渡金属氧化物因其多重氧化态、多金属离子特性和高理论比容量,在电化学储能相关领域备受关注。首先简要阐述了柔性超级电容器的结构及储能机理。然后,概述了以不同元数的过渡金属氧化物为主体构筑的"二元"和"三元"柔性复合电极材料。接着,总结了由复合电极材料组装成的柔性超级电容器在可穿戴电子设备和多功能柔性器件——储能智能窗(ESS窗)方面的应用。最后,提出了过渡金属氧化物基柔性超级电容器在实际应用中所面临的挑战及今后的主要研究方向。  相似文献   

19.
微型超级电容器(MSCs)具有高的功率密度和卓越的循环性能,广泛的潜在应用,因而受到诸多关注。然而,制备具有高表面电容和能量密度的MSCs电极仍然存在挑战。本研究使用还原石墨烯气凝胶(GA)和二硫化钼(MoS2)作为材料,结合3D打印和表面修饰方法成功构建了具有超高表面电容和能量密度的MSCs电极。通过3D打印技术,获得具有稳定宏观结构和GA交联微孔结构的电极。此外,采用溶液法在3D打印电极表面加载MoS2纳米片,进一步提高了材料的电化学性能。具体而言,电极的表面电容达3.99 F cm-2,功率密度为194μW cm-2,能量密度为1 997 mWh cm-2,表现出卓越的电化学性能和循环稳定性。这项研究为制备具有高表面电容和高能量密度的微型超级电容器电极提供了一种简单高效的方法,在MSCs电极领域具有重要的参考意义。  相似文献   

20.
超级电容器与锂电池相比具有更高的循环稳定性以及更高的能量密度。提高超级电容器电极材料化学稳定性,增大离子吸附比表面积,以获得更好的电化学性能,成为超级电容器研究领域的热点。以湿化学还原法制备的石墨烯为基底,采用原位电化学沉积法制成了石墨烯/聚吡咯导电复合材料超级电容器电极。通过扫描电子显微镜(SEM)对电极的微观形貌进行了观察,利用电化学工作站对组装的超级电容器电化学性能进行了系统表征,同时探讨了沉积浓度和沉积时间对电化学性能的影响。结果表明,在0.2 mol/L吡咯溶液中沉积时间为22.5 min制备出的石墨烯/聚吡咯导电复合材料电极的比电容可达388 F/g,表现出优良的超级电容器电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号