首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plates of superelastic nickel‐titanium shape memory alloy (NiTi) were coated with calcium phosphate (hydroxyapatite) by high‐temperature plasma‐spraying. The porous layer of about 100 μm thickness showed a good adhesion to the metallic substrate that withstood bending of the plate but detached upon cutting the plate. The biocompatibility was tested by cultivation of blood cells (whole blood and isolated granulocytes [a subpopulation of blood leukocytes]). As substrates, pure NiTi, plasma‐spray‐coated NiTi and calcium phosphate‐coated NiTi prepared by a dip‐coating process were used. The adhesion of whole blood cells to all materials was not significantly different. In contrast, isolated granulocytes showed an increased adhesion to both calcium phosphate‐coated NiTi samples. However, compared to non‐coated NiTi or dip‐coated NiTi, the number of dead granulocytes adherent to plasma‐sprayed surfaces was significantly increased for isolated granulocytes (p<0.01).  相似文献   

2.
(Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti composite coatings were fabricated on NiTi shape memory alloy via plasma immersion ion implantation and deposition (PIIID). Surface morphology of samples was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cross-sectional morphology indicated that the PIIID-formed coatings were dense and uniform. X-ray diffraction (XRD) was used to characterize the phase composition of samples. X-ray photoelectron spectroscopy (XPS) results showed that the surface of coated NiTi SMA samples was Ni-free. Nanoindentation measurements and pin-on-disc tests were carried out to evaluate mechanical properties and wear resistance of coated NiTi SMA, respectively. For the in vitro biological assessment of the composite coatings in terms of cell morphology and cell viability, osteoblast-like SaOS-2 cells and breast cancer MCF-7 cells were cultured on NiTi SMA samples, respectively. SaOS-2 cells attached and spread better on coated NiTi SMA. Viability of MCF-7 cells showed that the PIIID-formed composite coatings were noncytotoxic and coated samples were more biocompatible than uncoated samples.  相似文献   

3.
Novel sol-gel derived calcium phosphate coatings on Mg4Y alloy   总被引:1,自引:0,他引:1  
Calcium phosphates (CaPs) and silicon containing calcium phosphates (Si-CaPs) coatings on a biodegradable magnesium yttrium alloy (Mg4Y) were prepared by a sol-gel technique to improve the bioactivity of the alloy surface. The experimental results show that thick porous coatings comprised of nano-sized calcium phosphate particles can be prepared by heating the as dip coated substrates at 450 °C. The in vitro degradation results show that the coatings do not alter the degradation kinetics of the substrates significantly and the release of magnesium and yttrium ions at initial time points was very similar for both the coated and bare substrates. The cyto-compatibility studies using MC3T3-E1 osteoblasts show that the coated substrates were more bioactive than the uncoated substrates as the cells begin to grow and form a matrix on the coated substrates more easily than on the bare metal. These preliminary results collectively show the potential of use of sol-gel derived calcium phosphate coatings on magnesium based degradable scaffolds to improve their surface bioactivity.  相似文献   

4.
In this investigation, plasma immersion ion implantation and deposition (PIIID) was used to fabricate a (Ti, O, N)/Ti coating on NiTi shape memory alloy (SMA) to improve its long-term biocompatibility and wear resistance. The surface morphology, composition and roughness of uncoated and coated NiTi SMA samples were examined. Energy dispersive X-ray elemental mapping of cross-sections of (Ti, O, N)/Ti coated NiTi SMA revealed that Ni was depleted from the surface of coated samples. No Ni was detected by X-ray photoelectron spectroscopy on the surface of coated samples. Furthermore, three-point bending tests showed that the composite coating could undergo large deformation without cracking or delamination. After 1 day cell culture, SaOS-2 cells on coated samples spread better than those on uncoated NiTi SMA samples. The proliferation of SaOS-2 cells on coated samples was significantly higher at day 3 and day 7 of cell culture.  相似文献   

5.
Attempts were made to deposit homogeneous films of calcium phosphates (CaPs) on two magnesium alloy systems, AZ31 and Mg-4Y, through an aqueous phosphating bath method. The deposition of silicate substituted CaPs by this aqueous method was also explored as silicate substitution is believed to increase the bioactivity of CaPs. The effect of doped and undoped coatings on the in vitro degradation and bioactivity of both alloy systems was studied. FTIR and EDX confirmed the deposition of Ca, P, and Si on both alloys and the coatings appeared to consist primarily biphasic mixtures of hydroxyapatite and β-TCP. These largely inhomogeneous coatings, as observed by SEM, were not shown to have any significant effect on maintaining the physiological pH of the culture medium in comparison to the uncoated samples, as the pH remained approximately in the 8.4-8.7 range. Interestingly, despite similar pH profiles between the coated and uncoated samples, CaP coatings affected the degradation of both alloys. These doped and undoped calcium phosphate coatings were observed to decrease the degradation of AZ31 whereas they increased the degradation of Mg-4Y. In vitro studies on cell attachment using MC3T3-E1 mouse osteoblasts showed that between the uncoated alloys, Mg-4Y appeared to be the more biocompatible of the two. Silicate substituted CaP coatings were observed to increase the cell attachment on AZ31 compared to bare and undoped CaPs coated samples, but did not have as great of an effect on increasing cell attachment on Mg-4Y.  相似文献   

6.
The purpose of this study is to investigate the effect of porous NiTi alloy on bone formation with a bulk NiTi alloy as a contrast. The porous NiTi alloy prepared by element powder sintering under Ar protection has a porosity of 45% and a mean pore size of 130 μm, and the pores are highly interconnected. The porous and bulk NiTi alloys were bilaterally implanted into the femurs of rabbits for 15 weeks. The bone-implant interface and bone ingrowth were evaluated by undecalcified histological examination under light and fluorescent microscope as well as environmental scanning electron microscope (ESEM). The results show: osteoblasts are very active with fast proliferation and no adverse tissue reaction occurs for the porous NiTi alloy after 15 weeks implantation; porous NiTi alloy has better osteoconductivity and osteointegration than the bulk one; the osteoblasts can ingrow the pores of porous NiTi implant, and direct bone-implant interface can be observed by fluorescent light microscope.  相似文献   

7.
In this paper, the effects of micro-arc oxidation (MAO) surface modification (alumina coatings) on the phase transformation behavior, shape memory characteristics, in vitro haemocopatibility and cytocompatibility of the biomedical NiTi alloy were investigated respectively by differential scanning calorimetry, bending test, hemolysis ratio test, dynamic blood clotting test, platelet adhesion test and cytotoxicity testing by human osteoblasts (Hobs). The results showed that there were no obvious changes of the phase transformation temperatures and shape memory characteristics of the NiTi alloy after the MAO surface modification and the coating could withstand the thermal shock and volume change caused by martensite-austenite phase transformation. Compared to the uncoated NiTi alloys, the MAO surface modification could effectively improve the haemocopatibility of the coated NiTi alloys by the reduced hemolysis ratio, the prolonged dynamic clotting time and the decreased number of platelet adhesion; and the rough and porous alumina coatings could obviously promote the adherence, spread and proliferation of the Hobs with the significant increase of proliferation number of Hobs adhered on the surface of the coated NiTi alloys (P?<?0.05).  相似文献   

8.
This work is aimed at evaluating the in vivo histological performance of HA coated NiTi through chemical treatments and the untreated NiTi after two years implantation by animal model. A complete implant–bone interfacial osseointegration was observed after HA coated and untreated NiTi was implanted into the animal model for two years. However, the osseous lamella structure on HA coated NiTi was more mature and the osseous tissue was more compact as compared with that of untreated NiTi, which was ascribed to the differences resulted from nickel ion release from the alloy, cell adhesion ability and osteogenesis mechanism during the early stage of implantation. The bioactivity and biocompatibility of NiTi alloy are significantly improved by coating the alloy with HA through chemical treatment, though the untreated NiTi shows good biocompatibility after long time implantation.  相似文献   

9.
在NiTi合金表面通过液相阴极等离子体技术制备了氧化铝(Al2O3)陶瓷涂层。采用X射线衍射和扫描电镜对涂层的相组成以及表面形貌进行了表征和分析,证实在材料表面形成了由α-Al2O3和γ-Al2O3组成的涂层,发现涂层具有粗糙多孔结构。在模拟体液中对NiTi合金的Ni离子释放情况进行了检测,发现液相阴极等离子体改性后显著降低了Ni离子的释放。为NiTi合金植入体的表面改性提供了一条新途径。  相似文献   

10.
Due to unique properties of NiTi shape memory alloys such as high corrosion resistance, biocompatibility, super elasticity and shape memory behavior, NiTi shape memory alloys are suitable materials for medical applications. Although TiO2 passive layer in these alloys can prevent releasing of nickel to the environment, high nickel content and stability of passive layer in these alloys are very debatable subjects. In this study a NiTi shape memory alloy with nominal composition of 50.7 atom% Ni was investigated by corrosion tests. Electrochemical tests were performed in two physiological environments of Ringer solution and NaCl 0.9% solution. Results indicate that the breakdown potential of the NiTi alloy in NaCl 0.9% solution is higher than that in Ringer solution. The results of Scanning Electron Microscope (SEM) reveal that low pitting corrosion occurred in Ringer solution compared with NaCl solution at potentiostatic tests. The pH value of the solutions increases after the electrochemical tests. The existence of hydride products in the X-ray diffraction analysis confirms the decrease of the concentration of hydrogen ion in solutions. Topographical evaluations show that corrosion products are nearly same in all samples. The biocompatibility tests were performed by reaction of mouse fibroblast cells (L929). The growth and development of cells for different times were measured by numbering the cells or statistics investigations. The figures of cells for different times showed natural growth of cells. The different of the cell numbers between the test specimen and control specimen was negligible; therefore it may be concluded that the NiTi shape memory alloy is not toxic in the physiological environments simulated with body fluids.  相似文献   

11.
医用多孔NiTi合金表面微弧氧化改性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为解决多孔Ni Ti合金耐蚀性降低和Ni离子释放量增大而引起的使用安全性问题.本文采用微弧氧化技术对医用多孔Ni Ti合金进行表面改性处理,研究结果表明,微弧氧化处理并未改变多孔Ni Ti合金原有的孔隙结构和孔隙率,只在其外表面和孔隙内表面均形成了典型的微弧氧化多孔涂层.该涂层主要由氧化铝相组成,并含有少量的Ti和Ni元素,且外表面涂层的Ti和Ni含量要略低于孔隙内表面涂层.微弧氧化涂层提高了多孔Ni Ti合金的表面接触角,将原有的亲水表面转变成了疏水表面.经微弧处理后,多孔Ni Ti合金的耐蚀性较基体提高了1个数量级以上,Ni离子释放量也较基体降低了1个数量级以上.  相似文献   

12.
The main objective of this work was to evaluate the specific role of calcium phosphates surface energy on serum protein adsorption and human osteoblast adhesion, by isolating chemical effects from those caused by topography. Highly dense phosphate ceramics (single-phase hydroxyapatite HA and β-tricalcium phosphates β-TCP) presenting two distinct nano roughnesses were produced. Some samples were gold-sputter coated in order to conveniently mask the surface chemical effects (without modification of the original roughness) and to study the isolated effect of surface topography on cellular behavior. The results indicated that the nano topography of calcium phosphates strongly affected the protein adsorption process, being more important than surface chemistry. The seeding efficacy of osteoblasts was not affected nor by the topography neither by the calcium phosphate chemistries but the β-TCP chemistry negatively influenced cell spreading. We observed that surface hydrophobicity is another way to change protein adsorption on surfaces. The decrease of the polar component of surface energy on gold-coated samples leaded to a decreased albumin and fibronectin adsorption but to an increased cell adhesion. Overall, this work contributes to better understand the role of topography and surface chemistry of calcium phosphates in serum protein adsorption and osteoblast adhesion.  相似文献   

13.
Zirconium ion implantation was performed on NiTi alloy to suppress Ni ion release as well as to improve corrosion resistance and cell-material interaction. A thicker Ni-depleted nano-scale composite layer formed after Zr implantation and the corrosion resistance was evidently increased in aspects of increased E br ? E corr (difference between corrosion potential and breakdown potential) and decreased corrosion current density. 2.5/2 NiTi sample possessed the highest E br ? E corr, more than 500 mV higher than that of untreated NiTi, suggesting a significant improvement on pitting corrosion resistance. Ni ion release rate of Zr–NiTi was decreased due to the depletion of Ni in the superficial surface layer and the diffusion resistance effect of the ZrO2/TiO2 nano-film. Increased surface wettability induced by increased surface roughness was obtained after Zr implantation. Zr–NiTi samples were found to be favorable to endothelial cells (ECs) proliferation, especially after 5 and 7 days culture.  相似文献   

14.
Tao Sun  Min Wang 《Materials Letters》2010,64(16):1769-58
In this investigation, (Ti, O, N)/Ti composite coating was fabricated on a NiTi shape memory alloy (SMA) to improve its biocompatibility, bioactivity and wear resistance for its long-term medical applications, using the plasma immersion ion implantation and deposition (PIIID) technique. Scanning electron microscopic (SEM) examination of coating cross-sections showed that the (Ti, O, N)/Ti composite coating was uniform and compact. Energy dispersive X-ray (EDX) analysis not only indicated that the interface between the coating and NiTi SMA substrate was gradual rather than sharp, but it also showed the thickness of the composite coating to be ∼ 1.0 μm. The EDX mapping of cross-sections of (Ti, O, N)/Ti composite coating revealed that Ni was not present on the surface of the coated samples. Nanoindentation tests were performed to evaluate mechanical properties of the composite coating. Pin-on-disc wear test results showed greatly improved wear resistance of (Ti, O, N)/Ti coated NiTi SMA.  相似文献   

15.
An in-situ synthesis method was employed to produce NiTi-Ti2Ni-Ni3Ti multiphase intermetallics. In this regard, the amorphous/nanocrystalline Ni-Ti powders were sintered at 1300 °C for 2 hrs to obtain Ni-Ti alloys with dense structure. Tafel polarization tests were employed to study corrosion behavior of multiphase materials in 3.5% NaCl and 0.1 M H2SO4 corrosive media. The results indicated that the microstructure of sintered samples consists of NiTi(Fe) and Ti2Ni/Ti4Ni2Ox phases embedded in a Ni3Ti matrix. The synthesized multiphase materials had microhardness up to 873 HV1 kg.Further investigations showed the corrosion performance of multiphase samples in 3.5% NaCl solution was inferior to that of wrought NiTi alloy. In contrast, the corrosion resistance of multiphase samples in 0.1 M H2SO4 solution was comparable to that of wrought NiTi alloy.  相似文献   

16.
The authors aimed to assess the surface modification effects of plasma coatings on biocompatibility of nitinol intravascular stent in terms of anticoagulation, haemocytolysis rate, hydrophilicity, cytotoxicity and so on. In order to improve their surface adhesive properties to endothelial cells, NiTi alloy intravascular stents were treated and coated using a low-temperature plasma deposition technique. It was found that plasma coating changed the surface morphology of the stents to a micron-level surface roughness in the range of 1-5 microm. In comparison with the untreated control, the plasma-treated NiTi alloy intravascular stents showed increased surface hydrophilicity and enhanced anticoagulation property. Testing results on plasma-coated NiTi stents indicated that they complied with the standard of national biologic safety evaluation of medical apparatus and instrument (GB/T16886-1997, People's Republic of China) in terms of haemocytolysis rate, cytotoxicity and pyretogen.  相似文献   

17.
Recent researches have demonstrated that surface modification can improve the fretting wear resistance of NiTi alloys in air or enhance their aqueous corrosion resistance without fretting. However, little is known about the behaviour of surface engineered NiTi under fretting corrosion conditions. This is important for such body implants as orthodontic arch wires and orthopedic bone fixation devices because they need to withstand the combined attack of corrosion from body fluid and mechanical fretting. In this study, a NiTi alloy was ceramic conversion (CC) treated at 400 and 650 °C. The effect of the surface treatment on the fretting corrosion behaviour of NiTi alloy was investigated using fretting corrosion tests in the Ringer’s solution. The experimental results have shown that the CC treatment can convert the surface of NiTi into a TiO2 layer, which can effectively improve the fretting corrosion resistance of NiTi alloy and significantly reduce Ni ion release into the Ringer’s solution. Detailed SEM observations revealed that the untreated samples were severely damaged by adhesion and delamination; the high temperature (HT) (650 °C/1 h) treated samples were damaged mainly by spallation and adhesion; and the low temperature (LT) (400 °C/50 h) treated samples were characterised by mild abrasion. Mild oxidation and corrosion were also observed for all three types of samples tested under fretting corrosion conditions.  相似文献   

18.
The aim of this work is to investigate the surface characteristics and corrosion behavior of NiTi (50.6 at.% Ni) shape memory alloy coated by a ceramic-like and highly biocompatible material, iridium oxide (IrO2). IrO2 coatings were prepared by thermal decomposition of H2IrCl6 · 6H2O precursor solution at the temperature of 300 °C, 400 °C and 500 °C, respectively. The surface morphology and microstructure of the coatings were investigated by scanning electron microscope (SEM) and glancing angle X-ray diffraction (GAXRD). X-ray photoelectron spectroscopy (XPS) was employed to determine the surface elemental composition. Corrosion resistance property of the coated samples was studied in a simulated body fluid at 37 ± 1 °C by electrochemical method. It was found that the morphology and microstructure of the coatings were closely related to the oxidizing temperatures. A relatively smooth, intact and amorphous coating was obtained when the H2IrCl6·6H2O precursor solution (0.03 mol/L) was thermally decomposed at 300 °C for 0.5 h. Compared with the bare NiTi alloy, IrO2 coated samples exhibited better corrosion resistance behavior to some extent.  相似文献   

19.
In order to improve the corrosion resistance and biocompatibility of NiTi surgical alloy, TiO2 and TiO2-SiO2 thin films were prepared by sol-gel method. The surface characteristics of the film, which include surface composition, microstructure and surface morphology, were studied by X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectra (XPS), respectively. A scratching test was used to assess the interface adhesive strength between the film and substrate. The corrosion resistance of NiTi alloy coated with oxide films were studied by anodic polarization curves measurement in biological solution. Additionally, a preliminary study of the in vitro bioactivity of the films was conducted. The results indicated that TiO2 and TiO2-SiO2 (Ti/Si=4:1) films have higher electrochemical corrosion resistance and can be used as protective layers on NiTi alloy. In addition, TiO2-SiO2 composite films have better bioactivity than TiO2 film.  相似文献   

20.
Deposition of Bioactive Layer on NiTi Alloy by Chemical Treatment   总被引:3,自引:0,他引:3  
A simple chemical method was developed for inducing bioactivity on NiTi alloys(50 at.pct by Ni/Ti).A layer of calcium phosphate was deposited on the surface to improve biocompatibility of thealloy.NiTi alloys were first etched in HNO3 aqueous solution,and then treated with boiling diluted NaOH solution.A rough surface was created and a thin TiO2 layer was formed on the surface.Pre-calcification was then introduced by immersing the treated NiTi alloys in supersaturated Na2HPO4 solution and supersaturated Ca(OH)2 solution in turn before calcification in simulated body fluid (SBF).A dense and uniform bonelike calcium phosphate(Ca-P) bioactive layer was formed on the surfaces of the specimen,which would improve their biocompatibility.Morphology and element analysis on NiTi surfaces during the treatments were investigated in detail by means of environment scanning electron microscopy(ESEM),energy dispersion X-ray spectroscopy(EDXS),and X-ray diffraction (XPD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号