首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nowadays, dietary assessment becomes the emerging system for evaluating the person’s food intake. In this paper, the multiple hypothesis image segmentation and feed-forward neural network classifier are proposed for dietary assessment to enhance the performance. Initially, the segmentation is applied to input image which is used to determine the regions where a particular food item is located using salient region detection, multi-scale segmentation, and fast rejection. Then, the significant feature of food items is extracted by the global feature and local feature extraction method. After the features are obtained, the classification is performed for each segmented region using feed-forward neural network model. Finally, the calorie value is computed with the aid of (i) food area volume and (ii) calorie and nutrition measure based on mass value. The outcome of the proposed method attains 96% of accuracy value which provides the better classification performance.  相似文献   

2.
Segmentation is an important aspect of medical image processing. For improving the accuracy in the detection of tumour and improving the speed of execution in segmentation, a new genetic-based genetic algorithm with fuzzy initialisation and seeded modified region growing (GFSMRG) method with back propagation neural network (BPNN) is proposed and presented in this paper. The proposed system consists of four steps: pre-processing, segmentation, feature extraction and classification. The GFSMRG method and its components, feature extraction and classification are explained in detail. The performance analysis of the GFSMRG method with respect to accuracy and time complexity are also discussed. The performance of this method has been validated both quantitatively and qualitatively by using the performance metrics such as Similarity Index, Jaccard Index, Sensitivity, Specificity and Accuracy.  相似文献   

3.
The calorie value of the food items taken by the person in everyday life needs to be monitored to reduce the risk of obesity, heart problems, and diabetes, etc. The calorie estimator in the existing models has reduced accuracy since the calorie value of each food varies with mass. This paper introduces a dietary assessment system based on the proposed Cauchy, Generalized T-Student, and Wavelet kernel based Wu-and-Li Index Fuzzy clustering (CSW-WLIFC) based segmentation and the proposed Whale Levenberg Marquardt Neural Network (WLM-NN) classifier. The proposed CSW-WLIFC based segmentation segments the image based on the existing WLI-FC algorithm. A novel CSW based kernel function is utilized in the segmentation process. Feature vectors such as color, shape, and texture are extracted from the segmented image. The Neural Network is trained with the Whale-Levenberg Marquardt (WLM) model to recognize each food item from the tray image. The proposed calorie estimator calculates the calorie value of each food item. From the simulation results, it is evident that the proposed model has the improved performance than the existing models with the values of 0.999, 0.9643, 0.9627, and 0.0184 for the segmentation accuracy, macro average accuracy, standard accuracy, mean square error, respectively.  相似文献   

4.
The abnormal development of cells in brain leads to the formation of tumors in brain. In this article, image fusion based brain tumor detection and segmentation methodology is proposed using convolutional neural networks (CNN). This proposed methodology consists of image fusion, feature extraction, classification, and segmentation. Discrete wavelet transform (DWT) is used for image fusion and enhanced brain image is obtained by fusing the coefficients of the DWT transform. Further, Grey Level Co‐occurrence Matrix features are extracted and fed to the CNN classifier for glioma image classifications. Then, morphological operations with closing and opening functions are used to segment the tumor region in classified glioma brain image.  相似文献   

5.
Tuberculosis (TB) is a highly infectious disease and is one of the major health problems all over the world. The accurate detection of TB is a major challenge faced by most of the existing methods. This work addresses these issues and developed an effective mechanism for detecting TB using deep learning. Here, the color space transformation is applied for transforming the red green and blue image to LUV space, where L stands for luminance, U and V represent chromaticity values of color images. Then, adaptive thresholding is carried out for image segmentation and various features, like coverage, density, color histogram, area, length, and texture features, are extracted to enable effective classification. After the feature extraction, the size of the features is reduced using principal component analysis. The extracted features are subjected to fractional crow search-based deep convolutional neural network (FC-SVNN) for the classification. Then, the image level features, like bacilli count, bacilli area, scattering coefficients and skeleton features are considered to perform severity detection using proposed adaptive fractional crow (AFC)-deep CNN. Finally, the inflection level is determined using entropy, density and detection percentage. The proposed AFC-Deep CNN algorithm is designed by modifying FC algorithm using self-adaptive concept. The proposed AFC-Deep CNN shows better performance with maximum accuracy value as 0.935.  相似文献   

6.
With the development of deep learning and Convolutional Neural Networks (CNNs), the accuracy of automatic food recognition based on visual data have significantly improved. Some research studies have shown that the deeper the model is, the higher the accuracy is. However, very deep neural networks would be affected by the overfitting problem and also consume huge computing resources. In this paper, a new classification scheme is proposed for automatic food-ingredient recognition based on deep learning. We construct an up-to-date combinational convolutional neural network (CBNet) with a subnet merging technique. Firstly, two different neural networks are utilized for learning interested features. Then, a well-designed feature fusion component aggregates the features from subnetworks, further extracting richer and more precise features for image classification. In order to learn more complementary features, the corresponding fusion strategies are also proposed, including auxiliary classifiers and hyperparameters setting. Finally, CBNet based on the well-known VGGNet, ResNet and DenseNet is evaluated on a dataset including 41 major categories of food ingredients and 100 images for each category. Theoretical analysis and experimental results demonstrate that CBNet achieves promising accuracy for multi-class classification and improves the performance of convolutional neural networks.  相似文献   

7.
This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the following stages as, enhancement, feature extraction, and classifications. The enhancement of the source brain image is done using fuzzy logic and then dual tree‐complex wavelet transform is applied to this enhanced image at different levels of scale. The features are computed from the decomposed sub band images and these features are further classified using CANFIS classification method which identifies the meningioma brain image from nonmeningioma brain image. The performance of the proposed meningioma brain tumor detection and segmentation system is analyzed in terms of sensitivity, specificity, segmentation accuracy, and Dice coefficient index with detection rate.  相似文献   

8.
Breast cancer is one of the deadly diseases in women that have raised the mortality rate of women. An accurate and early detection of breast cancer using mammogram images is still a complex task. Hence, this article proposes a novel breast cancer detection model, which included five major phases: (a) preprocessing, (b) segmentation, (c) feature extraction, (d) feature selection, and (e) classification. The input mammogram image is initially preprocessed using contrast limited adaptive histogram equalization (CLAHE) and median filtering. The preprocessed image is then subjected to segmentation via the region growing algorithm. Subsequently, geometric features, texture features and gradient features are extracted from the segmented image. Since the length of the feature vector is large, it is essential to select the optimal features. Here, the selection of optimal features is done by a hybrid optimization algorithm. Once the optimal features are selected, they are subjected to the classification process involving the neural network (NN) classifier. As a novelty, the weight of NN is selected optimally to enhance the accuracy of diagnosis (benign and malignant). The optimal feature selection as well as the weight optimization of NN is accomplished by merging the Lion algorithm (LA) and particle swarm optimization (PSO), named as velocity updated lion algorithm (VU‐LA). Finally, a performance‐based evaluation is carried out between VU‐LA and the existing models like, whale optimization algorithm (WOA), gray wolf optimization (GWO), firefly (FF), PSO, and LA.  相似文献   

9.
We describe a system that performs model-based recognition of the projections of generalized cylinders, and present new results on the final classification of the feature data. Two classification methods are proposed and compared. The first is a Bayesian technique that ranks the object space according to estimated conditional probability distributions. The second technique is a new feed-forward “neural” implementation that utilizes the back-propagation learning algorithm. The neural approach yields a 31.8% reduction in classification error for a database of twenty models relative to the Bayesian approach, although it does not provide an ordered ranking of the object space. The accuracy results of the neural approach represent a significant performance advance in feature-based recognition by perceptual organization without the use of depth information. Examples are provided using the results of a simple segmentation system applied to real image data.  相似文献   

10.
《成像科学杂志》2013,61(7):556-567
Abstract

Region growing is an important application of image segmentation in medical research for detection of tumour. In this paper, we propose an effective modified region growing technique for detection of brain tumour. It consists of four steps which includes: (i) pre-processing; (2) modified region growing by the inclusion of an additional orientation constraint in addition to the normal intensity constrain; (3) feature extraction of the region; and (4) final classification using the neural network. The performance of the proposed technique is systematically evaluated using the magnetic resonance imaging (MRI) brain images received from the public sources. For validating the effectiveness of the modified region growing, we have considered the quantity rate parameter. For the evaluation of the proposed technique of tumour detection, we make use of sensitivity, specificity and accuracy values which we compute from finding out false positive, false negative, true positive and true negative. Comparative analyses were made of the normal and the modified region growing using both the Feed Forward Neural Network (FFNN) and Radial Basis Function (RBF) neural network. From the results obtained, we could see that the proposed technique achieved the accuracy of 80% for the testing dataset, which clearly demonstrated the effectiveness of the modified region growing when compared to the normal technique.  相似文献   

11.
This proposal aims to enhance the accuracy of a dermoscopic skin cancer diagnosis with the aid of novel deep learning architecture. The proposed skin cancer detection model involves four main steps: (a) preprocessing, (b) segmentation, (c) feature extraction, and (d) classification. The dermoscopic images initially subjected to a preprocessing step that includes image enhancement and hair removal. After preprocessing, the segmentation of lesion is deployed by an optimized region growing algorithm. In the feature extraction phase, local features, color morphology features, and morphological transformation-based features are extracted. Moreover, the classification phase uses a modified deep learning algorithm by merging the optimization concept into recurrent neural network (RNN). As the main contribution, the region growing and RNN improved by the modified deer hunting optimization algorithm (DHOA) termed as Fitness Adaptive DHOA (FA-DHOA). Finally, the analysis has been performed to verify the effectiveness of the proposed method.  相似文献   

12.
ABSTRACT

Deep metric learning has become a general method for person re-identification (ReID) recently. Existing methods train ReID model with various loss functions to learn feature representation and identify pedestrian. However, the interaction between person features and classification vectors in the training process is rarely concerned. Distribution of pedestrian features will greatly affect convergence of the model and the pedestrian similarity computing in the test phase. In this paper, we formulate improved softmax function to learn pedestrian features and classification vectors. Our method applies pedestrian feature representation to be scattered across the coordinate space and embedding hypersphere to solve the classification problem. Then, we propose an end-to-end convolutional neural network (CNN) framework with improved softmax function to improve the performance of pedestrian features. Finally, experiments are performed on four challenging datasets. The results demonstrate that our work is competitive compared to the state-of-the-art.  相似文献   

13.
Medical applications uses the computer assisted diagnosis system for recognizing the enormous amount of diseases, but cancer is one of the major challenge to the doctors because it is difficult to recognize in earlier stage with accurate manner. To overcome these issues, in this article, an early detection of brain cancer using Association Allotment Hierarchical Clustering technique is proposed. The proposed automatic detection process includes various processing steps such as preprocessing, image segmentation, feature extraction, selection, and cancer identification process. Initially the microscopic images are captured which contaminated several noises that have been removed by applying the mutual piece-wise linear transformation filtering approach. The method successfully eliminates irrelevant information and enhances the quality of the captured biopsy image. After that affected cancer cell region has been segmented with the help of Association Allotment Hierarchical Clustering method which examines the cell, tissues, and relevant border while segmenting the cancer cell. From the segmented region, different textures, statistical features are extracted depending on the tissue level, cell level, region, and contour level. Then to improve the performance of classification, the optimum features are selected using gray wolf optimization. The novelty of the proposed method is to give a better performance and the accuracy is obtained nearly 100%. Finally, the selected features are classified using neural network. Experimental result demonstrates that the performance of proposed method in terms of segmentation and computation time is better when compared with state-of-art approaches.  相似文献   

14.
陈轶楠  葛斌  王俊  陆婧  李超 《包装工程》2021,42(1):250-259
目的 针对药品生产包装过程中常出现缺陷泡罩包装药品的问题,研究一种基于多特征构建与集成分类器的泡罩包装药品缺陷识别方法.方法 该方法通过集成2个不同的分类器算法分别对药品图像类别进行预测,并采用联合判定函数对2个预测输出值进行联合决策,得到最终分类结果.第1个分类器模型通过将图像转化到HSV颜色空间,分割出泡罩区域和药片区域,进行特征设计,并在提取多项特征参数后构建BP神经网络分类算法给定药品类别预测.第2个分类器模型应用多层卷积神经网络取代传统算法对图像特征进行提取,并输出药品图像类别的预测值.根据2个分类器的性能进行算法集成,构成最终集成分类器.结果 实验结果表明,该集成分类模型对数据集中泡罩包装药品图像进行分类识别测试,准确率达97%以上.结论 集成分类模型不仅提高了单一分类器的识别准确率,也具有更佳的稳定性.该方法取得了卓越的分类效果,具有较高应用性.  相似文献   

15.
仝钰  庞新宇  魏子涵 《振动与冲击》2021,(5):247-253,260
针对一维信号作为卷积神经网络输入时无法充分利用数据间的相关信息的问题,提出GADF-CNN的轴承故障诊断模型。利用格拉姆角差域(GADF)对采集到的振动信号进行编码,可以很容易地进行角度透视,从而识别出不同时间间隔内的时间相关性并生产相应特征图,之后将其输入卷积神经网络(CNN)自适应的完成滚动轴承故障特征的提取与分类。为了验证模型性能,采用凯斯西储大学轴承数据集进行轴承故障诊断分析,同时引入常见神经网络作为对比,检验不同模型的分类性能。结果表明,相较于其他图像编码方式与神经网络,该模型在载荷变化以及噪声污染时,仍保持了良好的诊断性能。  相似文献   

16.
Automotive image segmentation systems are becoming an important tool in the medical field for disease diagnosis. The white blood cell (WBC) segmentation is crucial, because it plays an important role in the determination of the diseases and helps experts to diagnose the blood disease disorders. The precise segmentation of the WBCs is quite challenging because of the complex contents in the bone marrow smears. In this paper, a novel neural network (NN) classifier is proposed for the classification of the bone marrow WBCs. The proposed NN classifier integrates the fractional gravitation search (FGS) algorithm for updating the weight in the radial basis function mapping for the classification of the WBC based on the cell nucleus feature. The experimentation of the proposed FGS-RBNN classifier is carried on the images collected from the publically available dataset. The performance of the proposed methodology is evaluated over the existing classifier approaches using the measures accuracy, sensitivity, and specificity. The results show that the classification using the nucleus features alone can be utilized to achieve the classification with the better accuracy. Moreover, the classification performance of the proposed FGS-RBNN is better than the existing classifiers, and it is proved to be the efficacious classifier with a classification accuracy of 95%.  相似文献   

17.
生物式水质监测通常是先通过提取水生物在不同环境下的应激反应特征,再进行特征分类,从而识别水质。针对水质监测问题,提出一种使用卷积神经网络(CNN)的方法。鱼类运动轨迹是当前所有文献使用的多种水质分类特征的综合性表现,是生物式水质分类的重要依据。使用Mask-RCNN的图像分割方法,求取鱼体的质心坐标,并绘制出一定时间段内鱼体的运动轨迹图像,制作正常与异常水质下两种轨迹图像数据集。融合Inception-v3网络作为数据集的特征预处理部分,重新建立卷积神经网络对Inception-v3网络提取的特征进行分类。通过设置多组平行实验,在不同的水质环境中对正常水质与异常水质进行分类。结果表明,卷积神经网络模型的水质识别率为99.38%,完全达到水质识别的要求。  相似文献   

18.
甲状腺超声图像分割在临床超声图像研究中有很重要的意义。针对甲状腺超声图像信噪比低,斑点噪声多,且甲状腺形态不确定等问题,提出了一种改进的MultiResUNet分割网络(称为Oct-MRU-Net网络)。该方法在MultiResUNet网络的基本结构的基础上引入Octave卷积,并采用改进的Inception模块学习不同空间尺度的特征,将训练过程中的特征图按通道方向分为高低频特征。其中,高频特征描述图像细节和边缘信息,低频特征描述图像整体轮廓信息。在甲状腺超声图像分割过程中可以重点关注高频信息,减少空间冗余,从而实现对边缘更加精细的分割。实验结果表明,Oct-MRU-Net网络的性能相较于U-Net网络和MultiResUNet网络都有较大的提升,说明该网络对甲状腺超声图像的分割效果较好。  相似文献   

19.
The development of abnormal cells in human brain leads to the formation of tumors. This article proposes an efficient approach for brain tumor detection and segmentation using image fusion and co-active adaptive neuro fuzzy inference system (CANFIS) classification method. The brain MRI images are fused and the dual tree complex wavelet transform is applied on the fused image. Then, the statistical features, local ternary pattern features and gray level co-occurrence matrix features. These extracted features are classified using CANFIS classification approach for the classification of source brain MRI image into either normal or abnormal. Further, morphological operations are applied on the abnormal brain MRI image for segmenting the tumor regions. The proposed methodology is evaluated with respect to the performance metrics sensitivity, specificity, positive predictive value, negative predictive value, tumor segmentation accuracy with detection rate. The proposed image fusion based brain tumor detection and classification methodology stated in this article achieves 96.5% of average sensitivity, 97.7% of average specificity, 87.6% of positive predictive value, 96.6% of negative predictive value, and 98.8% of average accuracy.  相似文献   

20.
The detection and segmentation of tumor region in brain image is a critical task due to the similarity between abnormal and normal region. In this article, a computer‐aided automatic detection and segmentation of brain tumor is proposed. The proposed system consists of enhancement, transformation, feature extraction, and classification. The shift‐invariant shearlet transform (SIST) is used to enhance the brain image. Further, nonsubsampled contourlet transform (NSCT) is used as multiresolution transform which transforms the spatial domain enhanced image into multiresolution image. The texture features from grey level co‐occurrence matrix (GLCM), Gabor, and discrete wavelet transform (DWT) are extracted with the approximate subband of the NSCT transformed image. These extracted features are trained and classified into either normal or glioblastoma brain image using feed forward back propagation neural networks. Further, K‐means clustering algorithm is used to segment the tumor region in classified glioblastoma brain image. The proposed method achieves 89.7% of sensitivity, 99.9% of specificity, and 99.8% of accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号