首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
镁合金中加入Gd、Y、Nd等元素能提高其耐蚀性能,但目前对同时加入3种元素的情况研究较少。采用熔炼法制备了Mg-10Gd-3Y-Nd合金,并对其进行时效处理。利用金相显微镜、扫描电镜、X射线衍射仪等研究了时效态Mg-10Gd-3Y-Nd合金的微观组织及物相。通过静态失重法研究了时效态合金在不同浓度NaCl溶液中的耐腐蚀性能。结果表明:时效态合金主要由基体α-Mg和晶间共晶相(Mg_5Gd、Mg_(24)Y_5)组成,Gd能够良好地固溶于镁合金基体中;随着NaCl溶液浓度的增加,时效态合金的腐蚀速率增加,腐蚀深坑严重,颗粒状腐蚀物逐渐转为粉状;第二相颗粒的存在能阻止腐蚀过程向更深的晶粒区域发展,降低了腐蚀程度,提高了合金的耐腐蚀性。  相似文献   

2.
采用扫描电镜、X射线衍射对合金组织进行观察,研究在Mg-3Si(质量分数/%,下同)合金陆续添加Zn,Nd,Gd,Y元素后微观组织演变规律。结果表明:Mg-3Si合金中Mg_2Si粒子具有初生和共晶两种明显不同的形貌;添加3%Zn元素后的Mg-3.0Si-3.0Zn合金中,初生Mg_2Si粒子粗化,共晶Mg_2Si粒子完全消失;在Mg-2.0Nd-3.0Zn-3.0Si合金中,Nd元素的加入能有效地细化初生Mg_2Si粒子并生成少量的Mg_(41)Nd_5粒子;继续添加Gd,Y元素后,在Mg-8.0Gd-4.0Y-2.0Nd-3.0Zn-3.0Si合金中的Gd_5Si_3和YSi等粒子急剧增加而Mg_2Si粒子含量大大减少。通过Thermo-Calc热力学软件的热力学计算表明:Gd_5Si_3,YSi的吉布斯自由能低,Gd,Y原子与Si更容易形成化合物。在Mg-8Gd-4Y-2Nd-3Zn-3Si合金中,Gd_5Si_3,YSi,Mg_2Si三种化合物的室温吉布斯自由能分别为-9.56×10~4,-8.72×10~4,-2.83×10~4J/mol,粒子的质量分数分别为8.07%,5.27%,1.40%。  相似文献   

3.
利用光学金相显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、透射电镜(TEM)等分析手段研究铸态Mg-6Zn-x Ce合金的微观组织,利用闪光法求得合金热导率随Ce含量的变化规律。结果表明:Mg-6Zn合金主要由α-Mg和Mg 7Zn 3相组成,添加稀土元素Ce后,合金中出现三元相Ce 5(Mg,Zn)41,主要分布于晶界和枝晶间,三元相的产生对Mg 7Zn 3相有抑制作用;Ce元素的添加使合金共晶组织含量增多,且随Ce含量增加共晶组织分布的连续性增强;合金热导率随Ce含量的增加逐渐降低,原因可能是随着Ce含量升高,合金中共晶组织的体积分数增加,分布更加连续,对电子散射作用增强,延长电子传导路径,增大了热阻,使合金热导率降低。  相似文献   

4.
为了改善WE43镁合金的耐蚀性能,采用激光重熔(LSM)和微弧氧化(MAO)复合工艺对其表面进行了改性。通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)研究了WE43镁合金及其激光重熔层、微弧氧化膜层和激光重熔-微弧氧化膜层的微观组织、表面形貌和物相;通过GAMARY-Reference 600电化学工作站研究了其腐蚀行为,重点研究了镁合金激光重熔后微弧氧化膜层的微观组织、成分和耐蚀性能。结果表明:激光重熔使WE43镁合金晶粒细化、网状的β-Mg41Nd5相均匀分布和表面稀土元素Y及Nd增加,有效地改善了其耐蚀性能;微弧氧化膜和激光重熔后的微弧氧化膜层都可以显著提高WE43镁合金的耐蚀性能,但后者优于前者。  相似文献   

5.
Exfoliation on as-extruded Mg-1 Li-1 Ca magnesium alloy was investigated after an immersion in 3.5 wt%NaCl aqueous solution for 90, 120 and 150 days through optical microscope, digital camera, scanning electron microscope, electrochemical workstation, scanning Kalvin probe, X-ray diffraction and Fourier transform infrared spectroscope. The results demonstrated that exfoliation corrosion occurred on extruded Mg-1 Li-1 Ca alloy due to elongated microstructure parallel to surface, and delamination of lamellar structure resulted from galvanic effect and wedge effect. Skin layer with fine grains exhibited better corrosion resistance, whereas the interior with coarse grains and the intermetallic compound,Mg_2 Ca particles existing in a fibrous structure, dispersed along grain boundaries and extrusion direction in a line. Furthermore, galvanic effect between Mg_2 Ca particles and their neighboring a-Mg matrix facilitated dissolution of Mg_2 Ca particles and a-Mg matrix; wedge effect was caused by formation of corrosion products. Exfoliation corrosion of extruded Mg-Li-Ca alloys might be a synergic effect of pitting corrosion,filiform corrosion, intergranular corrosion and stress corrosion. Finally, exfoliation corrosion mechanism was proposed.  相似文献   

6.
《材料科学技术学报》2019,35(11):2477-2484
Through investigating and comparing microstructure and crystallographic texture of as-extruded Mg-14Li and Mg-14Li-6Zn-1Y(in wt%) alloys,the differences in their mechanical anisotropy were investigated.It revealed that the formation of I-phase(Mg_3Zn_6Y,icosahedral structure) can effectively refine grain size.Moreover,compared with Mg-14Li alloy,the texture type of Mg-14Li-6Zn-1Y alloy changed slightly,but its texture intensity decreased remarkably.As a result,the stronger texture contributed to the "normal" mechanical anisotropy of Mg-14Li alloy with higher tensile strength and a lower elongation ratio along transverse direction(TD) than those along extrusion direction(ED).However,for Mg-14Li-6Zn-1Y alloy,the zonal distribution of I-phase particles along ED caused "abnormal" mechanical anisotropy,i.e.higher tensile strength and better plasticity along ED.  相似文献   

7.
Microstructure and mechanical properties of an extruded Mg-2Dy-0.5Zn(at.%) alloy during isothermal ageing at 180 ℃ were investigated.Microstructure of the as-extruded alloy is mainly composed of α-Mg phase,14H long period stacking order(LPSO) phase and small amounts of(Mg,Zn)_xDy particle phases.During ageing,the 14H LPSO phase forms and develops and its volume fraction increases with increasing ageing time.Tensile test showed that the peak-aged alloy exhibits similar yield and ultimate tensile strengths and elongation to failure at room temperature,100 ℃ and 200 ℃,but excellent elevated temperature strengths at 300 ℃ as compared to the as-extruded and over-aged alloys.The analysis showed that the excellent elevated temperature strengths of the peak-aged alloy are attributed to the LPSO phase strengthening and the grain refinement strengthening,and the role of the LPSO strengthening is related to not only its amount,but also its morphology.  相似文献   

8.
As-cast and as-extruded Mg–6Li–xAl–0.8Sn (x?=?0, 1, 3 and 5?wt-%) alloys were prepared. The microstructure and mechanical properties were investigated and discussed. The experimental results show that the Mg–6Li–0.8Sn alloy is composed of three phases: α-Mg, Mg2Sn and Li2MgSn. With the addition of Al, the test alloys display typical α-Mg?+?β-Li duplex structures. The new Mg17Al12 and LiMgAl2 phases were found in the Mg–6Li–1Al–0.8Sn alloy. The lamellar-type AlLi phase was formed whereas the Mg17Al12 phase disappeared in Mg–6Li–3Al–0.8Sn alloy. The LiMgAl2 phase vanished in the Mg–6Li–5Al–0.8Sn alloy. The mechanical properties of as-extruded alloys were remarkably improved. The as-extruded Mg–6Li–3Al–0.8Sn alloy exhibited the best mechanical properties, with a yield strength, tensile strength and elongation of 209.8?MPa, 242.6?MPa and 15.5%, respectively.  相似文献   

9.
Influences of Sn and Y on the microstructure,mechanical properties,and corrosion behavior of as-cast Mg-5Li-3Al-2Zn (LAZ532) alloy were investigated.The addition of Sn and Y refines grains and results in the formation of Mg2Sn and Al2Y phases,thus improving the mechanical properties of alloy by second phase strengthening and grain refinement strengthening.As-cast LAZ532 alloy shows typical filiform corrosion morphology,and the addition of Sn and Y does not change the corrosion mode of alloy.Ascast LAZ532-0.8Sn-1.2Y alloy shows excellent mechanical properties with yield strength of 166.2 MPa,ultimate tensile strength of 228.6 MPa and elongation of 14.8 %,and exhibits the best corrosion resistance with the smallest corrosion current density and the lowest anodic dissolution rate.  相似文献   

10.
The effect of the Al content on the microstructure and mechanical behaviour of Mg–8Li–xAl–0.5Ca alloys is investigated. The experimental results show that an as-cast Mg–8Li–0.5Ca alloy is mainly composed of α-Mg, β-Li and granular Mg2Ca phases. With the addition of Al, the amount of α-Mg phase first increases and then decreases. In addition, the intermetallic compounds also obviously change. The microstructure of the test alloys is refined due to dynamic recrystallisation that occurs during extrusion. The mechanical properties of extruded alloys are much more desirable than the properties of as-cast alloys. The as-extruded Mg–8Li–6Al–0.5Ca alloy exhibits good comprehensive mechanical properties with an ultimate tensile strength of 251.2?MPa, a yield strength of 220.6?MPa and an elongation of 23.5%.  相似文献   

11.
采用光学显微镜和扫描电子显微镜研究了铸态Mg-3Zn-0.6Y-0.5Zr-0.3Ca(质量分数/%)合金的显微组织,采用失重法测试了合金在模拟体液中浸泡不同时间的生物腐蚀性能,并对合金的腐蚀行为进行分析。结果表明,Mg-3Zn-0.6Y-0.5Zr-0.3Ca合金中沿晶界连续分布的Mg3YZn6相对合金的腐蚀具有作为微阴极加速基体腐蚀或抑制腐蚀扩展的双重作用。Mg-3Zn-0.6Y-0.5Zr-0.3Ca合金的腐蚀过程分为3个阶段:晶界附近溶质原子贫化区形成几微米宽的腐蚀凹槽,在富Zr-贫Zr区形成大量腐蚀斑点,腐蚀凹槽和腐蚀斑点相互扩展破坏基体。  相似文献   

12.
In this work, the influence of solution heat treatment and hot extrusion on the microstructure and corrosion behavior of as-cast Mg−2Y−1Zn−0.4Zr−0.3Sr alloys are systematically investigated via X-ray diffractometer, scanning electron microscope coupled with energy-dispersive X-ray spectroscopy, electrochemical testing, and mass loss testing. The as-cast alloy comprises α-Mg matrix and Mn3Y2Zn3 (W-phase). Solution heat treatment and hot extrusion exert a conspicuous influence on the corrosion behavior of Mg−2Y−1Zn−0.4Zr−0.3Sr alloys through microstructure transformation. Both methods can remarkably improve corrosion resistance, and the as-extruded alloys exhibit an optimal corrosion resistance of 0.0432 mg ⋅ cm−2 ⋅ h−1 via mass loss testing. The three alloys exhibit a similar corrosion mechanism, which is based on galvanic corrosion. In the later stage of corrosion, a three-tier corrosion layer structure is formed. In combination with an array of analytical methods, the corrosion mechanisms of the three alloys are described in detail.  相似文献   

13.
Rare earth elements are known to improve both mechanical and corrosion properties. However, it highly depends on the final microstructure conditions of prepared material. During extrusion, intermetallic phases may be redistributed, partially dissolved or on the contrary, precipitated. The knowledge of the impact of extrusion on the individual alloys is therefore essential for their application. In this work, three magnesium alloys (Mg-4Y-3RE, Mg-2Y-1Zn, Mg-3Nd-0.5Zn) were prepared by an extrusion process. Microstructure, mechanical and corrosion properties were compared with extruded pure Mg. The advantages and disadvantages of individual alloys are discussed. Based on the obtained results, the Mg-4Y-3RE alloy seems to exert the best mechanical and corrosion properties. Other materials were characterised with anisotropy of mechanical properties and much higher corrosion rate.  相似文献   

14.
对Mg-5.0Y-3.0Nd-0.5Zr镁合金进行熔铸和不同温度的均匀化退火。测试该合金的室温拉伸力学性能。并采用金相显微镜,扫描电镜等方法观察铸态和均匀化退火态组织。结果表明,添加稀土元素能使镁合金的铸态组织得到细化,Nd和Y分别以Mg4、Nd3和Mg24Y化合物形式存在,均匀化退火后,试验合金抗拉强度和伸长率得到提高.其中450℃的均匀化退火效果最好,合金的抗拉强度比铸态时的提高了18.6%,塑性提高了3.5%。  相似文献   

15.
Mg–5Li–2Zn dual phase alloy was prepared and extruded with ratios of 10, 25 and 79. Microstructures were acquired, and Vickers hardness was examined as well as tensile and compressive properties. The results showed that the alloy possessed a low fraction of β-Li phase besides α-Mg phase. The increase of the extrusion ratio decreased the widths of both phases and also the grain size of α-Mg phase, while increased the homogeneity of the extruded alloys. The strengths were almost the same after the alloy was extruded with ratios of 10 and 25, and the alloy extruded with the ratio of 79 presented a higher strength and a lower ductility. Serrated flow appeared during the tension of the alloy extruded with the ratio of 10. In both tensile and compressive strain–stress curves, yield plateaus were more and more invisible with the increase of the extrusion ratio. It seemed that the deforming behavior of the duplex Mg–5Li–2Zn alloy is still of the pattern of hexagonal Mg alloy with little effect of β-Li phase because of its low fraction.  相似文献   

16.
利用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射(XRD)分析了Cu元素对Mg-Zn-xCu-Ce合金铸态组织的影响,并用显微硬度仪测试合金的显微硬度。结果表明:Cu含量的增加可以显著细化晶粒。当Zn,Cu质量比小于1时,合金枝晶间共晶组织由薄层状α-Mg+CuMgZn组成;当Zn,Cu质量比等于1时,合金中出现Mg2Cu相,同时共晶组织开始粗化;随着Cu含量的升高(Cu质量分数大于Zn),合金枝晶间共晶组织由α-Mg+CuMgZn+Mg2Cu组成,在形态上由薄层状转变为蜂窝状。合金的显微硬度随着Cu含量升高而增加。  相似文献   

17.
Aging behavior of Mg-3.6Y-0.5Zr and Mg-2.TNd-0.5Zr alloys was investigated by microhardness measurement and transmission electron microscopy.In the case of Mg-Y-Zr alloy,the presence ofβ″phase,a major strength- ener,having base centered orthorhombic structure with its lattice constants of a-(β″)=0.64 nm,b-(β″)=2.22 nm, and c-(β″)=0.52 nm was identified.In the case of Mg-Nd-Zr alloy aged at 250℃,the presence ofβ″andβ′phases was identified.The crystal structure ofβ″phase was found to be DO-(19) and its orientation relationships with Mg matrix were [0001]-(β″)//[0001]-(Mg) and [01(?)0]-(β″)//[01(?)0]-(Mg).Theβ′phase had face centered cubic structure and its orientation relationships with Mg matrix were [011]-(β′)//[0001]-(Mg) and [(?)1(?)]β′//[(?)110])-(Mg). The Mg-2.TNd-0.5Zr alloy showed higher hardness compared with Mg-3.6Y-0.5Zr alloy.  相似文献   

18.
Abstract

The Mg–2·5Nd–0·3Zn–0·1Sr–0·4Zr (wt-%) alloy was prepared by gravity casting. Solution treatment and extrusion were conducted. The microstructure, mechanical properties, and corrosion behaviour of the alloy under as cast, T4-treated, and as extruded conditions were evaluated using scanning electron microscope, tensile test, microhardometre, immersion test, and electrochemical test. The results show that the as extruded alloy exhibits the highest ultimate tensile strength (231 MPa), elongation (36·6%), and microhardness (57·8 HV). The as cast alloy shows the best corrosion resistance because the relative continuously distributed eutectic phase with noble corrosion potential acts as a corrosion barrier. The as extruded Mg–Nd–Zn–Sr–Zr alloy with high ductility and good corrosion resistance is desirable for preparing biodegradable implants.  相似文献   

19.
使用扫描电子显微镜(SEM)和光学显微镜(OM)观察、X-射线衍射(XRD)分析以及力学性能测试等手段研究了Bi含量对Mg-3Al-3Nd合金的显微组织和力学性能的影响。结果表明:添加Bi元素可细化Mg-3Al-3Nd合金的组织。当Bi含量(质量分数)为1%时晶粒最小,晶粒尺寸从1854±58 μm减小到890±64 μm;Mg-3Al-3Nd合金由呈网状分布在晶界的Al11Nd3相和分布在晶内的颗粒状Al2Nd组成;随着Bi含量的提高Al11Nd3相和Al2Nd相的数量减少,晶内的BiNd相数量增加;Bi能明显改善Mg-3Al-3Nd合金室温和高温力学性能,Bi含量为1%时其室温和高温力学性能最佳。室温抗拉强度和延伸率分别为167±2.3 MPa和(16.1±0.3)%,高温抗拉强度及延伸率分别为136±1.7 MPa和(19.3±0.3)%。  相似文献   

20.
In this study,we successfully prepared a Mg-6Zn-0.2Ca alloy by utilizing sub-rapid solidification (SRS)combined with hard-plate rolling (HPR),whose elongation-to-failure increases from ~17 % to ~23 %without sacrificing tensile strength (~290 MPa) compared with its counterpart processed via conven-tional solidification (CS) followed by HPR.Notably,both samples feature a similar refined grain structure with an average grain size of ~2.1 and ~2.5 μm,respectively.However,the high cooling rate of ~ 150 K/s introduced by SRS modified both the size and morphology of Ca2Mg6Zn3 eutectic phase in comparison to those coarse ones under CS condition.By subsequent HPR,the Ca2Mg6Zn3 phase was further refined and dispersed uniformly by severe fragmentation.Specially,the achieved supersaturation containing exces-sive Ca solute atoms due to high cooling rate was maintained in the SRS-HPR condition.The mechanisms that govern the high ductility of the SRS-HPR sample could be ascribed to following reasons.First,refined Ca2Mg6Zn3 eutectic phase could effectively alleviate or avoid the crack initiation.Furthermore,excessive Ca solute atoms in α-Mg matrix result in the yield point phenomenon and enhanced strain-hardening ability during tension.The findings proposed a short-processed strategy towards superior performance of Mg-6Zn-0.2Ca alloy for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号