首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The PEGylated derivatives of rosin-PD-1 and PD-2 synthesized and characterized earlier () were investigated as potential materials for sustained release microsphere prepared by emulsion solvent evaporation method using diclofenac sodium (DCS) as model drug. All the microspheres exhibited smooth surfaces intercepted by pores; their sizes (d90) ranged between 11–24 μm. The entrapment efficiency (< 80%) of the microspheres increased proportionally with derivative concentration. Presence of solvent like isopropyl alcohol or dichloromethane rendered the microspheres with large sizes but with reduced drug entrapment. Microspheres with small size were obtained at an optimum viscosity of liquid paraffin; any change lead to increase in the particle size. Magnesium stearate was found to be most suitable detackifier in the present system. The drug release was directly related to the particle size—small sized microspheres released drug at a faster rate. The dissolution data complied with Higuchi equation while the mechanism of drug release was Fickian diffusion (n ~ 0.5). Controlled inhibition of edema, as tested by hind paw edema method, was observed for 10 h when the microspheres were administered intraperitoneally. The present study found the derivatives as promising materials for preparing microspheres for sustained delivery of DCS.  相似文献   

2.
The aim of the present work was to prepare floating microspheres of atenolol as prolonged release multiparticulate system and evaluate it using novel multi-compartment dissolution apparatus. Atenolol loaded floating microspheres were prepared by emulsion solvent evaporation method using 32 full factorial design. Formulations F1 to F9 were prepared using two independent variables (polymer ratio and % polyvinyl alcohol) and evaluated for dependent variables (particle size, percentage drug entrapment efficiency and percentage buoyancy). The formulation(F8) with particle size of 329?±?2.69 µm, percentage entrapment efficiency of 61.33% and percentage buoyancy of 96.33% for 12?h was the of optimized formulation (F8). The results of factorial design revealed that the independent variables significantly affected the particle size, percentage drug entrapment efficiency and percentage buoyancy of the microspheres. In vitro drug release study revealed zero order release from F8 (98.33% in 12?h). SEM revealed the hollow cavity and smooth surface of the hollow microspheres.  相似文献   

3.
Methotrexate-loaded biodegradable polyanhydride microspheres were prepared by modified hot-melt technique and aqueous solvent evaporation technique. The effect of particle size, drug loading and microencapsulation technique on the in vitro drug release was studied. The in vitro release of methotrexate was evaluated using an automated flow-through cell system. The release profile consisted of burst release and sustained release phases. The burst release from the microspheres prepared by the modified technique was lower than that from the aqueous solvent evaporation technique. In addition, the microspheres with lower loadings released smaller amounts during the burst release phase. For a given loading and processing technique, the amount released by burst decreased with an increase in particle size. The microspheres prepared by the modified hot-melt technique with 10% loading and 177-250 μm size fraction gave desirable prolonged release. This formulation was tested in vivo in rats by subcutaneous implantation. The peak serum level of methotrexate was reached between 15-18 hours compared to that between 0-3 hours observed following the administration of an equivalent dose of methotrexate solution. No microspheres were found at the site of implantation at 48 hours post-implantation.  相似文献   

4.
Background: Various approaches have been used to retain the dosage form in stomach as a way of increasing the gastric residence time, including floatation systems; high-density systems; mucoadhesive systems; magnetic systems; unfoldable, extensible, or swellable systems; and superporous hydrogel systems. Aim?: The objective of this study was to prepare and evaluate floating microspheres of rosiglitazone maleate for the prolongation of gastric residence time. Method: The microspheres were prepared by solvent diffusion–evaporation method using ethyl cellulose and hydroxypropylmethylcellulose. A full factorial design was applied to optimize the formulation. Results: Preliminary studies revealed that the polymer:drug ratio, concentration of polymer, and stirring speed significantly affected the characteristics of microspheres. The optimum batch exhibited a prolonged drug release, remained buoyant for >12 hours, high entrapment efficiency, and particle size in the order of 350 μm. Conclusion: The results of 32 full factorial design revealed that the concentration of ethylcellulose 7 cps (X1) and stirring speed (X2) significantly affected drug entrapment efficiency, percentage release after 8 h and particle size of microspheres.  相似文献   

5.
《Advanced Powder Technology》2014,25(5):1541-1546
Alginate microspheres were prepared by a water-in-oil emulsion solvent diffusion method. The alginate microspheres were post-cross-linked with Ca2+ ions. Influence of Ca2+ concentration on the characteristics and drug release behaviors of alginate microspheres was evaluated. Blue dextran was used as a water-soluble model drug. The non-cross-linked alginate microspheres were less than 100 μm in size and had a spherical shape. The cross-linked alginate microspheres were also spherical in shape with a rougher surface but their particle sizes were larger than 100 μm. The drug encapsulation efficiency of the non-cross-linked alginate microspheres was very high (82%). The drug encapsulation efficiency of alginate microspheres cross-linked with 5% and 10% Ca2+ concentrations were similar to the non-cross-linked microspheres. The in vitro drug releases of the cross-linked alginate microspheres showed prolong release profiles. The cumulative release of blue dextran decreased as the Ca2+ concentration increased. Thus, Ca2+-post-cross-linked alginate microspheres show possibility for use as controlled-release drug carriers.  相似文献   

6.
Aim: The aim of this study was to prepare insulin-loaded poly(lactic acid)–polyethylene glycol microspheres that could control insulin release at least for 1 week and evaluate their in vivo performance in a streptozotocin-induced diabetic rat model. Methods: The microspheres were prepared using a water-in-oil-in-water double emulsion solvent evaporation technique. Different formulation variables influencing the yield, particle size, entrapment efficiency, and in vitro release profiles were investigated. The pharmacokinetic study of optimized formulation was performed with single dose in comparison with multiple dose of Humulin® 30/70 as a reference product in streptozotocin-induced diabetic rats. Results: The optimized formulation of insulin microspheres was nonporous, smooth-surfaced, and spherical in structure under scanning electron microscope with a mean particle size of 3.07 ×μm and entrapment efficiency of 42.74% of the theoretical amount incorporated. The in vitro insulin release profiles was characterized by a bimodal behavior with an initial burst release because of the insulin adsorbed on the microsphere surface, followed by slower and continuous release corresponding to the insulin entrapped in polymer matrix. Conclusions: The optimized formulation and reference were comparable in the extent of absorption. Consequently, these microspheres can be proposed as new controlled parenteral delivery system.  相似文献   

7.
Abstract

Enteric-coated epichlorohydrin crosslinked dextran microspheres containing 5-Fluorouracil (5-FU) for colon drug delivery was prepared by emulsification-crosslinking method. The formulation variables studied includes different molecular weights of dextran, volume of crosslinking agent, stirring speed, time and temperature. Dextran microspheres showed mean entrapment efficiencies ranging between 77 and 87% and mean particle size ranging between 10 and 25?µm. About 90% of drug was released from uncoated dextran microspheres within 8?h, suggesting the fast release and indicated the drug loaded in uncoated microspheres, released before they reached colon. Enteric coating (Eudragit-S-100 and Eudragit-L-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method. The release study of 5-FU from coated dextran microspheres was complete retardation in simulated gastric fluid (pH 1.2) and once the coating layer of enteric polymer was dissolved at higher pH (7.4 and 6.8), a controlled release of the drug from the microspheres was observed. Further, the release of drug was found to be higher in the presence of dextranase and rat caecal contents, indicating the susceptibility of dextran microspheres to colonic enzymes. Organ distribution and pharmacokinetic study in albino rats was performed to establish the targeting potential of optimized formulation in the colon.  相似文献   

8.
This work was aimed to design and optimize a long acting microsphere-based injectable formulation of aripiprazole by using D-optimal experimental design methodology. Microspheres were prepared by solvent evaporation method using PLGA and cholesterol as release rate retardant materials. The microspheres were characterized for their encapsulation efficiency, particle size, surface morphology, residual solvent content, and drug release behavior. Contour plots were plotted to study the encapsulation and release behaviour of the drug from the microspheres. Desirability technique was used for the optimization of microsphere formulation composition. By using an optimum blend of drug and cholesterol in the microsphere formulation it was possible to attain a consistent drug release for a period of 14 days. The results have confirmed that the D-optimal experimental design technique can be successfully employed for designing the long acting microsphere dosage form.  相似文献   

9.
This work was aimed to design and optimize a long acting microsphere-based injectable formulation of aripiprazole by using D-optimal experimental design methodology. Microspheres were prepared by solvent evaporation method using PLGA and cholesterol as release rate retardant materials. The microspheres were characterized for their encapsulation efficiency, particle size, surface morphology, residual solvent content, and drug release behavior. Contour plots were plotted to study the encapsulation and release behaviour of the drug from the microspheres. Desirability technique was used for the optimization of microsphere formulation composition. By using an optimum blend of drug and cholesterol in the microsphere formulation it was possible to attain a consistent drug release for a period of 14 days. The results have confirmed that the D-optimal experimental design technique can be successfully employed for designing the long acting microsphere dosage form.  相似文献   

10.
Abstract

To develop a prolonged and sustained release preparation, we prepared an albumin microsphere-in-oil-in-water emulsion (S/O/W) and examined sustained release from it in comparison with other control preparations such as water-in-oil (W/O) emulsions and microspheres in vitro and in vivo, respectively. Tegafur was used as a model drug. A microsphere-in-oil emulsion was prepared by adding albumin microspheres to soybean oil containing 20% Span 80. To prepare an S/O/W emulsion, the microsphere-in-oil emulsion was added into an aqueous solution of hydroxypropyl methylcellulose containing Pluronic F68. The mean particle size of the albumin microspheres was 3 µm, and the ratio of entrapment of tegafur into albumin microspheres was about 25%. In an in vitro release test, the t75 of the S/O/W emulsion was fourfold greater and in an in vivo release test the mean residence time of tegafur from the S/O/W emulsion was more than twofold that from a W/O emulsion or microsphere system. The mean residence time of 5-fluorouracil (5-FU) from an S/O/W emulsion was also greater than with other dosage forms. These results suggest the possible usefulness of an S/O/W emulsion for the sustained and prolonged release of tegafur.  相似文献   

11.
Background: The aim of this study was to develop chitosan microspheres for nasal delivery of ondansetron hydrochloride (OND). Method: Microspheres were prepared with spray-drying method using glutaraldehyde as the crosslinking agent. Microspheres were characterized in terms of morphology, particle size, zeta potential, production yield, drug content, encapsulation efficiency, and in vitro drug release. Results: All microspheres were spherical in shape with smooth surface and positively charged. Microspheres had also high encapsulation efficiency and the suitable particle size for nasal administration. In vitro studies indicated that all crosslinked microspheres had a significant burst effect, and sustained drug release pattern was observed until 24 hours following burst drug release. Nasal absorption of OND from crosslinked chitosan microspheres was evaluated in rats, and pharmacokinetic parameters of OND calculated from nasal microsphere administration were compared with those of both nasal and parenteral administration of aqueous solutions of OND. In vivo data also supported that OND-loaded microspheres were also able to attain a sustained plasma profile and significantly larger area under the curve values with respect to nasal aqueous solution of OND. Conclusion: Based on in vitro and in vivo data, it could be concluded that crosslinked chitosan microspheres are considered as a nasal delivery system of OND.  相似文献   

12.
The effects of particle size of microspheres on the drug release from a microsphere/sucrose acetate isobutyrate (SAIB) hybrid depot (m-SAIB) was investigated to develop a long-term sustained release drug delivery system with low burst release both in vitro and in vivo. A model drug, risperidone, was first encapsulated into PLGA microspheres with different particle sizes using conventional emulsification and membrane emulsification methods. The m-SAIB was prepared by dispersing the risperidone-microspheres in the SAIB depot. The drug release from m-SAIB was double controlled by the drug diffusion from the microspheres into SAIB matrix and the drug diffusion from the SAIB matrix into the medium. Large microspheres (18.95?±?18.88?µm) prepared by the conventional homogenization method exhibited porous interior structure, which contributed to the increased drug diffusion rate from microspheres into SAIB matrix. Consequently, m-SAIB containing such microspheres showed rapid initial drug release (Cmax?=?110.1?±54.2?ng/ml) and subsequent slow drug release (Cs(4–54d)=?2.7?±?0.8?ng/ml) in vivo. Small microspheres (5.91?±?2.24?µm) showed dense interior structure with a decreased drug diffusion rate from microspheres into SAIB matrix. The initial drug release from the corresponding m-SAIB was significantly decreased (Cmax?=?40.9?±?13.7?ng/ml), whereas the drug release rate from 4 to 54 d was increased (Cs(4–54d)=4.1?±?1.0?ng/ml). By further decreasing the size of microspheres to 3.38?±?0.70?µm, the drug diffusion surface area was increased, which subsequently increased the drug release from the m-SAIB. These results demonstrate that drug release from the m-SAIB can be tailored by varying the size of microspheres to reduce the in vivo burst release of SAIB system alone.  相似文献   

13.
Background: If erythromycin is micronized into microspheres with suitable particle size, it can improve pulmonary drug concentration to maximize its effectiveness and minimize the adverse side effects. Aim: In this study, erythromycin gelatin microspheres (EM-GMS) were prepared and some characteristics of EM‐GMS were investigated. The drug-targeting index (DTI) of EM-GMS was evaluated to predict their potential as a targeted delivery system. Method: Erythromycin was microencapsulated with gelatin by a double emulsion solvent evaporation method. Some characteristics of EM-GMS, including morphology, particle size, in vitro release, and safety were researched. Results: EM-GMS had a spherical shape and smooth surface morphology. The drug loading and encapsulation efficiency of EM-GMS were 13.56 ± 0.25% and 55.82 ± 2.23%, respectively. The release of erythromycin from EM-GMS showed an initial burst and following a sustained release, with an accumulate release of 80% at 4 hours. The EM-GMS was safe since there was no vein irritation and no hemolysis on the erythrocyte of rabbit at 3.5 mg/mL and a LD50 of 173.07 mg/kg. After administering EM-GMS to rabbits, the concentration of erythromycin in lung was 15.92 times higher than that in plasma and the DTI of EM-GMS in lung was 6.65 as compared with erythromycin lactobionate. Conclusions: The preparation technology of EM-GMS for lung targeting was successful and the quality of microspheres was good.  相似文献   

14.
Context: Polymeric carrier systems of paclitaxel (PCT) offer advantages over only available formulation Taxol® in terms of enhancing therapeutic efficacy and eliminating adverse effects. Objective: The objective of the present study was to prepare poly (lactic-co-glycolic acid) nanoparticles containing PCT using emulsion solvent evaporation technique. Methods: Critical factors involved in the processing method were identified and optimized by scientific, efficient rotatable central composite design aiming at low mean particle size and high entrapment efficiency. Twenty different experiments were designed and each formulation was evaluated for mean particle size and entrapment efficiency. The optimized formulation was evaluated for in vitro drug release, and absorption characteristics were studied using in situ rat intestinal permeability study. Results: Amount of polymer and duration of ultrasonication were found to have significant effect on mean particle size and entrapment efficiency. First-order interactions of amount of miglyol with amount of polymer were significant in case of mean particle size, whereas second-order interactions of polymer were significant in mean particle size and entrapment efficiency. The developed quadratic model showed high correlation (R2 > 0.85) between predicted response and studied factors. The optimized formulation had low mean particle size (231.68 nm) and high entrapment efficiency (95.18%) with 4.88% drug content. The optimized formulation showed controlled release of PCT for more than 72 hours. In situ absorption study showed faster and enhanced extent of absorption of PCT from nanoparticles compared to pure drug. Conclusion: The poly (lactic-co-glycolic acid) nanoparticles containing PCT may be of clinical importance in enhancing its oral bioavailability.  相似文献   

15.
Various butorphanol-loaded microparticles have been prepared with a biodegradable copolymer P(FAD-SA) of erucic acid dimer (FAD) and sebacic acid (SA) and a copolymer P(CPP-SA) of carboxyphenoxypropane (CPP) and SA using a melt compounding and milling method. Drug release was measured in vitro following incubation of drug-loaded microparticles in water for injection at 37°C. It was found that butorphanol was released in a sustained manner, yielding a cumulative drug release of about 100% over a period of 48 hr. Also, drug release was affected by drug loading and the size of the microparticles; however, it was not significantly influenced by the copolymer composition. Scanning electron microscopic (SEM) results showed that most of the particles were irregular in shape with uneven surfaces. The molecular weights of the copolymers were not changed after this fabrication process. In addition, 20% butorphanol-encapsulated microspheres were prepared with copolymer P(FAD-SA) by spray-drying. The SEM micrograph shows that the particle sizes of the microspheres ranged from 2 to 10 μm, and the external surfaces appear smooth. Moreover, rapid drug release was observed for these microspheres, with more than 92% of the encapsulated drug released within the first 2 hr.  相似文献   

16.
Abstract

This study aims to investigate the solid lipid nanoparticle (SLN) as a novel vehicle for the sustained release and transdermal delivery of piroxicam, as well as to determine the anti-inflammation effect of piroxicam-loaded SLN. SLN formulation was optimized and the particle size, polydispersity index, zeta potential (ZP), encapsulation efficiency, drug release, and morphological properties were characterized. The transdermal efficiency and mechanism of the piroxicam-loaded SLNs were investigated in vitro. With the inflammation induced edema model in rat, the anti-inflammatory efficiency of piroxicam-enriched SLNs (Pir-SLNs) was evaluated. The SLN formulation was optimized as: lecithin 100?mg, glycerin monostearate 200?mg, and Tween (1%, w/w). The particle size is around 102?±?5.2?nm with a PDI of 0.262. The ZP is 30.21?±?2.05?mV. The prepared SLNs showed high entrapment efficiency of 87.5% for piroxicam. There is no interaction between piroxicam and the vehicle components. The presence of polymorphic form of lipid with higher drug content in the optimized Pir-SLNs enables the Pir-SLNs to release the drug with a sustained manner. Pir-SLNs with oleic acid as enhancer can radically diffuse into both the stratum corneum and dermal layer, as well as penetrate through the hair follicles and sebaceous glands with significantly higher density than the other control groups. Pir-SLNs promptly inhibited the inflammation since the 3rd hour after the treatment by decreasing the PGE2 level. SLN was demonstrated to be a promising carrier for encapsulation and sustained release of piroxicam. Pir-SLN is a novel topical preparation with great potential for anti-inflammation application.  相似文献   

17.
Poly(lactic-co-glycolic acid) (PLGA) microspheres containing celecoxib were prepared via electrospraying, and the influence of three processing parameters namely flow rate, solute concentration and drug loading, on the physico-chemical properties of the particles and the drug-release profile was studied. Microspheres with diameters between 2 and 8 μm were produced and a near-monodisperse size distribution was achieved (polydispersivity indices of 6–12%). Further, the inner structure of the particles showed that the internal porosity of the particles increased with increasing solvent concentration. X-ray powder diffraction (XRPD) analysis indicated that the drug was amorphous and remained stable after eight months of storage. Drug release was studied in USP 2 (United States Pharmacopeia Dissolution Apparatus 2) dissolution chambers, and differences in release profiles were observed depending on the parametric values. Changes in release rate were found to be directly related to the influence of the studied parameters on particle size and porosity. The results indicate that electrospraying is an attractive technique for producing drug-loaded microspheres that can be tailored towards an intended drug-delivery application. Compared with the more conventional spray-drying process, it provides better control of particle characteristics and less aggregation during particle formation. In particular, this study demonstrated its suitability for preparing capsules in which the drug is molecularly dispersed and released in a sustained manner to facilitate improved bioavailability.  相似文献   

18.
The particle size usually has an important effect on the rate of drug liberation from sustained release systems. The nature of that effect depends on the geometry of the system and the mechanism of the drug release (1). The aim of the present study was to characterize the relationship between the drug release projile of granules produced by luboratory fluidization and their particle size. The magnesium oxide release from granules-which are of two different particle sizes and contain Eudragit polymer-was investigated both experimentally and with mathematical models. First-order, cube root, square root, and two-thirds root models were applied for the evaluation of the drug release data. Changes in the particle size of the investigated granules altered the drug release profile  相似文献   

19.
Various butorphanol-loaded microparticles have been prepared with a biodegradable copolymer P(FAD-SA) of erucic acid dimer (FAD) and sebacic acid (SA) and a copolymer P(CPP-SA) of carboxyphenoxypropane (CPP) and SA using a melt compounding and milling method. Drug release was measured in vitro following incubation of drug-loaded microparticles in water for injection at 37°C. It was found that butorphanol was released in a sustained manner, yielding a cumulative drug release of about 100% over a period of 48 hr. Also, drug release was affected by drug loading and the size of the microparticles; however, it was not significantly influenced by the copolymer composition. Scanning electron microscopic (SEM) results showed that most of the particles were irregular in shape with uneven surfaces. The molecular weights of the copolymers were not changed after this fabrication process. In addition, 20% butorphanol-encapsulated microspheres were prepared with copolymer P(FAD-SA) by spray-drying. The SEM micrograph shows that the particle sizes of the microspheres ranged from 2 to 10 μm, and the external surfaces appear smooth. Moreover, rapid drug release was observed for these microspheres, with more than 92% of the encapsulated drug released within the first 2 hr.  相似文献   

20.
The purpose of this project was to develop sustained release chitosan/β-cyclodextrin microspheres of theophylline (TH) prepared by spray drying method. The effect of several formulation variables on the characteristics of microspheres was studied. The B microspheres had a narrower particle size distribution with the diameter between l and 10 μm. SEM showed spherical microspheres with smooth or slightly wrinkled surfaces. FT-IR spectroscopy revealed that hydrogen bonds were formed between TH and chitosan or β-cyclodextrin. The drug entrapments significantly increased from 13.33 to 35.70% with an increase of the ratio of drug/polymer. The encapsulation efficiencies were from 85.16 to 91.40%. The in vitro release of TH from microspheres was related to the pH of the medium, swelling ability, especially in the ratio of drug/polymer. The B microspheres had a prolonged release pattern with the release rate of 60.20% (pH 6.8) within 8 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号