首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
采用FE - SEA混合法,建立飞机舱室内噪声预测模型,提出飞机舱室的子系统划分方法,并开展4种不同激励条件下舱内噪声中频噪声预测研究。通过仿真和实验结果的对比分析,验证FE - SEA混合法在预测舱内中频噪声方面的准确性和有效性。分析结果表明:FE-SEA混合法能够比SEA方法更有效地预测舱内中频段的噪声。  相似文献   

2.
基于FE-SEA混合方法的声腔内部噪声预测   总被引:2,自引:1,他引:1       下载免费PDF全文
对二子系统的互易关系进行了阐述,给出了混合FE-SEA的系统方程。通过数值仿真,建立了声腔-平板-声腔系统的FE-SEA混合模型,同时建立了声腔-平板-声腔系统的SEA模型,对声腔模态密度、SEA模型中声腔与板的耦合损耗因子进行了计算,同时计算了FE板与SE板的辐射效率,并对2个模型进行了响应计算,分析了误差产生的原因,并将FE-SEA模型与SEA模型计算结果进行了对比,对比结果表明,二者在中高频段具有较好的一致性。同时还建立了声腔-轿车后风挡玻璃-声腔系统的FE-SEA混合模型,以及该系统的SEA模型,通过试验对内侧声腔激励进行了测量,计算了FE-SEA模型与SEA模型外侧声腔的响应声压级,并与试验结果进行了对比,对比结果表明,在中高频段FE-SEA模型与SEA模型的预测结果相吻合,且FE-SEA模型与试验结果有着较好的一致性。  相似文献   

3.
以11.4万吨阿芙拉油船为研究对象,运用VA One噪声分析软件在63 Hz~8 000 Hz频段开展油船舱室噪声预报分析研究。根据模型平板和声腔子系统的模态数,将求解频段划分为高频段和中频段,采用统计能量分析方法(SEA)和混合法(Hybrid FE-SEA)预报计算各频段舱室噪声。结果表明,大部分舱室的噪声预报值都符合MSC.337(91)的限值要求。针对不符合规范要求的舱室,分析噪声超标原因并提出相应降噪措施,使油船所有舱室噪声预报值均满足规范要求。  相似文献   

4.
为研究某车型风窗噪声,根据格子波尔兹曼(Lattice Boltzmann,LBM)方法获得高速行驶工况下车身表面各监测点处的1/3 倍频程声压级及平均输入激励。采用混合有限元-统计能量分析(Finite Element-Statistical EnergyAnalysis,FE-SEA)方法对该车型车内噪声进行输入激励下的数值模拟,得到驾驶员耳旁声压级结果,并与实车道路试验比较,验证了该方法的可靠性。仿真结果表明,在20 Hz~125 Hz范围内,混合FE-SEA方法精度高于统计能量分析(Statistical Energy Analysis,SEA)方法;在125 Hz~400 Hz中频范围内,根据混合FE-SEA方法所得结果与道路试验结果更为吻合,与试验结果的误差最大值不超过3 dB;在400 Hz~1 000 Hz范围内,SEA方法的精度逐渐提升,其计算结果与试验值吻合度升高。据此进行的车身部件贡献量分析表明左前侧窗在整个频段内都对驾驶员耳旁噪声有影响, 左后侧窗对其贡献量最小。  相似文献   

5.
为研究湍流脉动噪声激励下复合材料层合板的传声特性,首先基于一般层合板理论将复合材料层合板等效为单层各向异性板,进而采用FE-SEA混合方法研究其传声损失。同时开展复合材料层合板传声损失试验,并将FE-SEA结果和统计能量法(SEA)结果以及实验值进行对比分析。研究结果表明:FE-SEA结果和实验值整体上分布趋势一致,而且误差也相对较小,其中3 000 Hz~10 000 Hz误差在2 dB以内,但由于刚度等效导致2 000 Hz附近结果误差相对较大。相较于SEA方法, FE-SEA混合方法综合考虑了复合材料层合板边界条件和详细得几何特征,不仅可以准确地计算复合材料层合板的固有特性,而且使得传声损失结果在全频带内与试验值吻合得更好。因此建立的二维等效FE-SEA混合模型可以准确预示复合材料层合板在湍流脉动噪声激励下的传声损失。  相似文献   

6.
利用VA One软件对某三体船进行舱室噪声预报与控制方法研究。首先对船体进行简化建立整船模型,并对模型施加外部激励,预报各舱室的噪声水平。再应用VA One软件对不同吸声材料的吸声性能进行模拟计算,考察声腔子系统的能量输入关系。根据能量贡献量的大小混合使用不同吸声材料对指定舱室进行噪声控制处理,得到了较好的降噪效果。  相似文献   

7.
由于空间站核心舱的声源频谱特性、结构形式、材料属性等非常复杂,整个预示模型可能出现子系统模态密度差异较大的情况,单一的有限元方法或统计能量分析法均不能对整个系统的声振环境进行有效评价。本文基于FE-SEA混合法,建立整舱复杂声振耦合精细化噪声仿真模型并仿真,得到舱内的"中频"噪声水平特性分布。结果表明,基于FE-SEA混合模型所得声压级曲线在全频域普遍高于单纯采用统计能量模型计算的结果;尤其在160Hz附近,睡眠区的FE-SEA模型结果要远大于SEA模型的结果。  相似文献   

8.
机舱集控室是船舶最难的噪声控制对象之一。利用VA One软件,基于统计能量法(SEA),建立某平台工作船的SEA模型,进行舱室噪声预测,并与实测值进行比较。分析集控室和它相连所有子系统间的声能量输入关系,得到集控室声能量组成及排序情况,确定空气声和结构声对集控室的影响,将此作为减振降噪依据。根据集控室噪声频谱特性及软件NCT功能,采用声学包设计方法,用不同材料组合对集控室各个面进行降噪处理,最终有效地控制集控室噪声,并为船舶舱室降噪提供一个参考方法。  相似文献   

9.
振声能量传递路径是船舶舱室噪声控制的重要依据之一。对中高频振声问题采用统计能量分析(SEA)求解,引入SEA系统传递路径的概念,并结合图论提出了舱室噪声传递的SEA赋权图法。将SEA系统等效为结点和有向边组成的有向图G_(SEA),噪声传递路径问题转变为求解G_(SEA)中的最大权重路径问题,通过偏离算法得到的K主要路径即为能量传递的主路径。以某船机舱传递到住舱中的能量传递路径为例,首先确定不同振声源在目标舱室中产生的噪声分量,选取对目标舱室影响最大子系统为路径分析对象,然后使用SEA赋权图法求解主要传递路径,从而揭示能量在结构和声腔中的传播机理,为船舶降噪优化提供指导。  相似文献   

10.
通过"张骞号"科考船项目,介绍整船振动分析的具体步骤和方法。根据全船图纸资料,通过三维建模软件建立整船模型。模型导入有限元软件中,在船体外壳附加附连水质量,在甲板附加不同负载重量来确定船体的空载、满载工况,并求得船体在不同工况下的模态频率及振型。在船体四周建立流场模型,建立了模拟船体自由漂浮在水上状态的流固耦合模型。在船体甲板建立不同的设备工作状态下的输入激励,并计算分析了船体局部振动。  相似文献   

11.
基于波动理论分析实心阻振质量阻抑振动波传递特性,根据阻抗失配与波动形式转换原理,设计矩形空心与实心阻振质量回路结构并引入到主机基座周围。以模态密度为划分子结构依据,将整船结构划分为FE子结构和SEA子结构。采用FE-SEA混合法对模型的舱室声振特性进行预测,与实验值进行对比,验证仿真结果的有效性。与原始结构进行对比,分析阻振质量对基座结构振动波阻抑特性。结果表明:布置矩形阻振质量回路后,含有空心阻振质量结构的舱室较原始基座结构和实心阻振结构有较好的减振降噪效果,尤其在中频段减振降噪效果明显优于低频段降噪效果。  相似文献   

12.
通风空调系统辐射噪声是船舶舱室内最主要的噪声源,吸声处理是降低舱室噪声的一种有效途径。为考察吸声处理对降低舱室噪声的效果,建立通风空调管路噪声向船舶舱内辐射的有限元法数值预报模型。以实测的管口声压为噪声源,研究舱室壁面及通风管路吸声对舱室降噪效果的影响,进而用于指导和改进船舶舱室的声学设计。对通风空调系统改变后的舱室噪声进行预报,并针对较高的噪声进行声学设计,使舱室噪声问题得到解决。  相似文献   

13.
基于统计能量分析(SEA)原理,对高超声速飞行器X-43A建立SEA模型,采用理论、经验公式及试验数据确定SEA模型的三个参数。将数值模拟计算结果与噪声试验值进行对比,结构声振响应的统计能量分析与试验结果趋势上较为一致,但低频段二者差异较大,高频段较为吻合;结构舱内响应噪声声压的计算值与试验测量值相比,不论在高频还是中低频,二者都较为一致,误差约3 dB,说明统计能量分析法对振动噪声环境预测是比较可靠的。  相似文献   

14.
基于统计能量分析法,建立海洋平台高频噪声预报模型,采用VA One预报舱室有无舾装材料的高频噪声,将计算得到舱室噪声A声级与规范要求值进行对比,分别得到满足与不满足噪声规范要求的舱室。对不满足规范噪声要求的舱室采取降噪措施处理,并根据舱室能量输入情况和能量传递路径来确定阻尼材料最佳布置位置。根据不同吸声材料在不同频段内吸声特点,对舱室布置多层吸声材料组合并进行舱室声压级计算。选用序列二次规划法,对多层吸声材料厚度和重量进行声学优化,并通过七组对比计算验证优化结果的准确性。  相似文献   

15.
基于统计能量分析(SEA)原理,建立了某型号飞机试验平台SEA模型,通过分析舱内噪声的主要能量来源,对能量输入的主要板件(舱壁、窗户等)进行了降噪处理,结果表明客舱内的噪声强度得到了一定程度的降低,所用的降噪处理措施是可行的。  相似文献   

16.
研究了汽车车身钣金加强肋隔声性能实测与计算分析,利用SEA方法和FE-SEA方法建立薄板隔声量计算模型,并与测试值进行对比验证。以车身钣金加强肋高度、宽度、加强肋开孔及钣金加强肋布置密度等因素为变量,设计并制造出不同方案的车身钣金加强肋,然后在混响室-全消室中测试了不同方案钣金加强肋隔声量。试验结果表明,钣金加强肋宽度增加,隔声量在全频段上增大;在钣金加强肋上开孔,隔声量下降;钣金加强肋布置密度增大,隔声曲线峰值、谷值增多。基于试验与计算对比结果,对汽车车身钣金加强肋隔声量计算影响因素进行了分析。  相似文献   

17.
介绍统计能量法的基本理论,并以某科考船为分析对象,利用VA One软件进行舱室噪声预报,分析声学材料、阻尼材料及空调噪声对舱室噪声的影响。结果发现:添加声学材料后,舱室噪声下降显著;3种阻尼方案总体上来说对舱室噪声影响差别不大,但从重量方面考虑,方案二优于其它2种;选用具有良好降噪效果的布风器,可减小空调噪声对上层建筑舱室噪声的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号