首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
以报废液体推进剂硝酸-27S、鳞片石墨、高锰酸钾、硫酸和冰醋酸为原料,采用化学氧化法制备高倍可膨胀石墨.考察了高锰酸钾、硝酸-27S(水吸收液)、冰醋酸用量等因素对可膨胀石墨膨胀容积的影响;通过正交实验确定最佳工艺;采用扫描电镜(SEM)和X射线衍射(XRD)对可膨胀石墨进行表征.结果表明:最佳工艺为鳞片石墨(g):高锰酸钾(g):硝酸-27S(水吸收液)(mL):硫酸(mL):冰醋酸(mL)=1∶1∶1.25∶1.25∶2,于40℃下反应90 min,所获可膨胀石墨的最大膨胀容积为320 mL·g-1;对膨胀容积影响最大的因素为KMnO4用量;SEM和XRD证实了石墨层间化合物的存在.  相似文献   

2.
为进一步增大膨胀石墨的膨胀体积,用二次插入的方法制备了石墨层间化合物。首先用化学氧化法制备了膨胀体积为250mL/g的可膨胀石墨,然后以膨胀体积为250mL/g的可膨胀石墨为原料,用二次插入的方法制备了膨胀体积为380mL/g的膨胀石墨。讨论了各种反应物比率、反应温度和反应时间对膨胀体积的影响。对制得的膨胀石墨进行了各种表征,XRD谱显示产物保持了天然石墨的层状晶体结构,但是产物的石墨层间距离增大。扫描电镜照片显示通过二次插入石墨层间确实被进一步打开。结果显示这种新的制备方法是可行的,它为纳米石墨材料的研究提供了新的思路。  相似文献   

3.
球形微膨胀石墨电极材料的制备及其表征   总被引:1,自引:1,他引:0  
以石墨化中间相炭微球(MCMB)为前驱体,采用氧化、微膨胀法制备了微膨胀石墨电极材料(e-MCMB);采用X射线衍射仪和扫描电镜表征样品的外貌、结构,并采用恒电流充放电测试和循环伏安法研究了微膨胀石墨电极在LiPF6有机电解液体系中的电化学行为.结果表明,微膨胀石墨材料有良好的球形形状,晶体参数La10、Lc和平均堆积碳层数与MCMB相比显著减小;平均层间距d(002)大于石墨材料,在0.411~0.418nm范围;首次充电在4.5~4.8V间存在明显的“电化学活化”现象,储能行为不同于传统石墨材料;在2.5~4.8V电压区间,放电比电容量达143.7F/g;将微膨胀石墨正极材料与石墨负极材料匹配,预计能得到高能量密度的锂离子电容器.  相似文献   

4.
化学还原石墨烯薄膜的制备及结构表征   总被引:1,自引:1,他引:0  
以天然鳞片石墨为原材料,采用Hummers法成功制备了氧化石墨,并采用化学还原方法制备石墨烯薄膜材料,分别应用X射线衍射(XRD)、能谱分析(EDS)、拉曼光谱分析(Raman)、傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)对氧化石墨和化学还原石墨烯薄膜的性能、结构和形貌进行了表征。实验结果表明,通过控制溶液的pH值为10可防止石墨烯团聚,石墨烯溶液的分散性非常好,碳氧比达到了8.8∶1,扫描电镜图片观察到了较薄的片层。通过XRD图谱可以看出,石墨烯薄膜比原始石墨的层间距变大。拉曼光谱表明,石墨烯薄膜相对氧化石墨的ID/IG值更大,样品在还原的过程中无序度增加。石墨烯薄膜的微观结构研究为其在超级电容器电极或重金属废水过滤膜等方面的应用提供了理论基础。  相似文献   

5.
以可膨化石墨、天然鳞片石墨、膨胀石墨为原料,采用Hummers法制备氧化石墨,采用X射线衍射、扫描电子显微镜对氧化石墨进行表征,分析比较这三种原材料制备氧化石墨的氧化程度。采用逐层自组装法(LBL)在玻璃基底上制得碳纳米管/氧化石墨复合薄膜,并通过水合肼蒸汽还原法将薄膜还原成碳纳米管/石墨烯透明导电薄膜。最后对薄膜的透光性能和导电性能进行比较,发现三种原料制备的导电玻璃中,以膨胀石墨为原料制备的玻璃导电性能最好,12层时达到了59.1kΩ/sq,但透光性却逊于其他两种原料制备的玻璃片。  相似文献   

6.
以硝酸为氧化剂,冰醋酸、甲酸为插层剂,采用化学氧化的方法制备可膨胀石墨.通过正交试验确定最佳工艺参数:10g鱼鳞片石墨,V(冰醋酸):V(甲酸):V(硝酸)=2:3:4,反应温度为20℃,反应时间为45min,制得可膨胀石墨在600℃时的膨胀体积为260mL/g;通过XRD分析检测插层剂,SEM观察膨胀石墨的表面形貌,测试结果表明,插层剂已插入石墨层间,形成石墨层间化合物,且膨胀石墨的表面形貌为疏松多孔结构.  相似文献   

7.
利用改进的Hummer法制备氧化石墨,然后分别采用化学还原法和热还原法将氧化石墨还原制得功能化石墨烯。采用X-射线衍射(XRD)、扫描电镜(SEM)、傅立叶红外(FT-IR)和热重(TG)等表征手段对功能化石墨烯制备过程中的原料石墨、氧化石墨和石墨烯进行了表征。结果表明,化学还原法和热还原法都能还原氧化石墨制得功能化石墨烯,但还原程度不同。与化学还原法相比,热还原法制备的功能化石墨烯含有较少含氧基团,且工艺简单,耗时少,是一种高效制备大量功能化石墨烯的方法。  相似文献   

8.
通过控制水热反应原料中氧化石墨与氯化锰的比例、甲醇的添加量以及水热反应的温度,制备了不同反应条件下的RGO/Mn Ox复合材料。利用X射线衍射(XRD)、X射线光电子能谱(XPS)和场发射扫描电镜(FE-SEM)表征了样品的晶相结构、氧化石墨的不同含氧基团含量、锰的不同化学价态及其比例和微观形貌。利用电化学工作站测试了样品在三电极测试系统下的循环伏安曲线(cyclic voltammetry,CV)、计时电位曲线(chronopotentiometry)和交流阻抗图谱(electrochemical impedance spectroscopy,EIS)。电化学测试表明,用1 mol/L Na2SO4作为电解液,电位范围为0~1V,充放电电流密度为1 A/g的条件下,样品的最佳比电容高达289.8 F/g,在充放电电流密度为20 A/g的条件下,比电容仍然有223.9 F/g,并且在充放电密度为5 A/g的的条件下充放电循环1 000次后样品的比电容仍然保持在初始比电容的84.5%。  相似文献   

9.
郭晓琴  黄靖  王永凯  陈雷明  余小霞  张锐 《功能材料》2013,44(12):1800-1803
以天然鳞片石墨为原料,氧化插层制备可膨胀石墨,微波热解膨胀后,对膨胀石墨进行二次氧化插层并微波膨胀,采用超声剥离法制备出包含大量少层数碳原子的石墨烯纳米片。采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和拉曼光谱(Raman)对其结构和形貌进行分析。结果表明,氧化插层增大了石墨层间距,膨胀石墨更易于进一步氧化插层引入含氧基团;在微波作用下,石墨内部含氧基团热分解放出气体,进一步增大石墨层间距,甚至部分剥离;对二次膨胀处理的石墨薄片进行超声剥离可得到石墨烯纳米片,大部分石墨烯层数低于5层。  相似文献   

10.
以膨胀石墨为原料,与滚压振动磨预处理得到的纳米锌粉混合,超声分散24h制备膨胀石墨-纳米氧化锌及锌的复合电极材料(EG/ZnO/Zn)。采用X射线衍射仪(XRD)、场发射扫描电子显微(SEM)、场发射透射电子显微镜(TEM)、拉曼光谱分析仪(Raman),对材料的微观结构及成分表征。结果表明,复合材料中含锌和氧化锌,纳米锌粉颗粒和氧化锌纳米棒在膨胀石墨表面和层间分散良好,其中氧化锌纳米棒呈现出六方晶系纤锌矿结构,其直径大约为20nm。利用电化学循环伏安和恒电流充放电对材料进行电化学电容性能测试,表明经处理的复合电极材料在0.1A/g的电流密度下有明显的赝电容特性,比电容达147F/g,其赝电容来源不只是欠电位沉积的化学吸附,还有氧化还原反应。  相似文献   

11.
以牛血清白蛋白(BSA)改性玻璃纤维表面, 利用静电吸附原理制备氧化石墨包覆的玻璃纤维复合材料, 采用氢碘酸还原氧化石墨得到石墨烯包覆玻璃纤维导电材料。利用X射线衍射(XRD)和傅立叶变换红外光谱仪(FT-IR)等表征样品的物相结构和基团类型, 扫描电镜(SEM)表征石墨烯包覆玻璃纤维的形貌特征。当氧化石墨分散液pH低于6时, 随着pH减小, 包覆效果变得更明显。通过粒径/Zeta电位仪表征氧化石墨和BSA在不同pH下的Zeta电位, 结果表明BSA等电点约为5.3, 氧化石墨的等电点小于3。得到的石墨烯包覆玻璃纤维导电材料的电导率达到4.5 S/m, 制备的导电玻璃纤维具有一定的柔性, 在弯曲后仍能保持原有的导电性能; 导电玻璃纤维在高于100℃热处理后, 由于石墨烯在高温下可以继续还原, 其电导率得到一定的提高, 表明制备的导电玻璃纤维可以在较高温度下使用。  相似文献   

12.
以天然鳞片石墨和膨胀石墨为原料,以抗坏血酸为还原剂,首先采用改进的Hummers法合成石墨烯,再利用混合化学法和水热法制备出Al_2O_3/石墨烯复合粉体材料。通过X射线衍射仪、傅里叶红外光谱仪和扫描电镜等测试手段对产物进行表征,并研究了该复合粉体的吸波性能。结果表明:膨胀石墨所制氧化石墨烯的氧化程度要高于鳞片石墨所制氧化石墨烯的氧化程度。180℃下反应3h后制备的Al_2O_3/石墨烯复合材料,晶粒大小约30nm,复合程度高,后期吸波性能好。  相似文献   

13.
通过改进的Hummers法制备了高氧化程度的氧化石墨(GO),再利用微波膨胀制备了石墨纳米薄片(wGO),并采用X射线能谱分析(EDS)、热重分析(TGA)、元素分析、红外分析对GO和wGO进行测试。结果表明,wGO中O含量较GO中明显减少,说明微波膨胀能还原GO,使其表面含氧基团减少;进一步采用X射线衍射(XRD)、原子力显微镜(AFM)对wGO的结构和形貌进行表征,表明微波法使GO层间距增大,剥离效果明显。利用溶液法原位聚合制备了wGO/聚氨酯弹性体(TPU)纳米复合材料,扫描电镜(SEM)观测显示,wGO在TPU基体中有良好的分散性;当wGO的质量分数为3%时,拉伸强度提高了116.1%;当其质量分数为2%时,导热性能和导电性能分别提高了72.4%和6个数量级。wGO/TPU纳米复合材料的微相分离程度更高,在室温下有更高的储存模量。  相似文献   

14.
采用还原法制备Pt/膨胀石墨和Pt-Co/膨胀石墨催化剂,用扫描电镜观察了改性后的膨胀石墨,用能谱和X射线衍射仪确定膨胀石墨的表面成分及结构。用循环伏安法研究了Pt/膨胀石墨和Pt-Co/膨胀石墨电极对甲醇的电催化性能,并探讨了Pt-Co/膨胀石墨电极对甲醇随温度变化的电催化特性。结果表明,Pt-Co颗粒均匀地存在于膨胀石墨电极表面及其孔隙中,Co元素的添加提升了Pt/膨胀石墨电极的催化活性和抗毒化能力。Pt-Co/膨胀石墨电极随温度升高,电极对甲醇催化性能逐步增强,45℃时催化活性最佳,55℃时催化性能衰减严重。  相似文献   

15.
以纯化的太西无烟煤粉为原料,采用催化石墨化及改良Hummers氧化技术制备煤基氧化石墨烯前驱体,将该前驱体与MnO_2进行原位复合并利用等离子体技术还原制备MnO_2/煤基石墨烯纳米复合材料。采用红外光谱、X射线衍射、扫描电镜和透射电镜等技术对煤基石墨烯及其复合材料进行表征,采用循环伏安法及恒流充放电法测试MnO_2/煤基石墨烯纳米复合材料的电化学性能。结果表明,与煤基石墨烯相比,MnO_2/煤基石墨烯纳米复合材料的比电容有显著提升,在1A/g电流密度下可达281.8 F/g,是煤基石墨烯比电容的3.48倍。  相似文献   

16.
制备品质优良的石墨蠕虫是石墨烯工业化的研究热点。采用微波膨胀法对可膨胀石墨进行剥离,成功制备得到石墨蠕虫。比较了高温加热法、普通微波设备法、专用微波设备法这三种方法制备石墨蠕虫的效果,结果表明,专用微波设备法制备的石墨蠕虫品质最好,1g可膨胀石墨制备的石墨蠕虫体积可达333mL,比表面积可达280m~2/g。与高温加热法相比,微波膨胀法具有制备速度快、蠕虫品质好、过程节能等优点,是一种大批量生产石墨蠕虫切实可行的方案。  相似文献   

17.
采用氧化石墨和七水合硫酸锌作为初始反应物, 在低温下(80℃)合成了氧化石墨/ZnO, 然后通过低温剥离法制备了高质量石墨烯/ZnO (GNS/ZnO)复合材料. 采用X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、热重分析仪(TG)、X射线光电子能谱(XPS)、拉曼光谱(RS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析手段对石墨烯/ZnO样品进行了表征. 结果表明: 氧化石墨还原彻底, 纳米ZnO成功地负载到了石墨烯上, 有效地减少了石墨烯片层间的团聚现象. 通过对ZnO和石墨烯/ZnO荧光性能测试, 结果表明: 石墨烯/ZnO发生了荧光淬灭现象, 在光电子领域拥有广阔的应用前景.  相似文献   

18.
以鳞片石墨为原料,采用插层氧化法制得可膨胀氧化石墨,然后经高温热解获得膨胀石墨,再通过超声剥离得到石墨烯纳米片,采用FTIR、XRD、SEM、TEM和Raman对所得石墨烯纳米片的微观结构进行表征。结果表明,可膨胀氧化石墨在800℃高温热解30 s得到膨胀体积最大的膨胀石墨,由80目和100目鳞片石墨制得的膨胀石墨的最大体积分别为215 mL/g和85 mL/g,且在50℃条件下超声剥离5 h分别得到30~50层和6~20层的石墨烯纳米片。  相似文献   

19.
陈宽  田建华  林娜  单忠强 《功能材料》2012,43(12):1594-1597
以天然鳞状石墨为原料,采用化学氧化法合成氧化石墨,再经低温热解膨胀得到膨胀石墨;采用微波加热乙二醇法同时还原膨胀石墨和PtClO2-6离子得到铂/石墨烯(Pt/Gr)复合材料.分析了反应前溶液的pH值、微波加热时间以及乙二醇中水含量对Pt/Gr结构及催化性能的影响.通过循环伏安法对Pt/Gr的电化学性能进行了表征.采用透射电镜和扫描电镜观察了Gr和Pt/Gr的表面结构.研究结果表明,在优化的实验条件下可以得到高负载量高分散性的Pt/Gr纳米复合材料.实验得到的40%(质量分数)Pt/Gr的Pt粒子粒径分布在3.0~3.3nm范围内,对氢电极和氧电极反应有高催化活性,可作为质子交换膜燃料电池的电催化剂.  相似文献   

20.
以高长径比的纤维素纳米纤丝(CNF)与片层结构的氧化石墨(GO)为原料,采用乙二胺还原和液氮梯度冷冻干燥制备纤维素纳米纤丝/石墨烯(CNF/rGO)复合气凝胶,并通过红外光谱、X射线衍射、X射线光电子能谱、扫描电镜、比表面积(BET)、电化学测试仪等对其进行性能表征。结果表明,所制备的CNF/rGO复合气凝胶具有完整的三维网络结构,当CNF和GO质量比为10∶1时,复合气凝胶的平均孔径为13nm,比表面积为110.2m2/g,在电流密度为1A/g下获得的质量比电容约为156F/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号