首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
以热剥离石墨烯为基底,通过一步水热法制备了CoOOH/MnO_2/石墨烯复合材料。采用XRD、SEM和TGA等技术对产品进行了表征。利用循环伏安法和恒电流充放电研究并比较了各单一材料与复合材料的电容性能。结果表明:CoOOH/MnO_2/石墨烯复合材料中石墨烯含量为65%时,比电容量最大高达509.00F/g。研究还发现复合材料具有相当好的循环稳定性能,循环1000次之后电容保持率高达84.45%,高于CoOOH/MnO_2纳米材料(63.95%)。  相似文献   

2.
以自然界富产煤炭为原料,通过高温处理、化学氧化及等离子体技术制备了煤基石墨烯,并进一步通过水热合成法将Fe2O3负载在所制石墨烯表面,成功制备了不同质量比的Fe2O3/石墨烯纳米复合材料。采用SEM、TEM等技术手段,研究了Fe2O3/石墨烯纳米复合材料的结构特征;采用电化学工作站和锂电池系统,研究了Fe2O3/石墨烯纳米复合材料的电化学特征。实验结果表明:质量比为50%的Fe2O3/石墨烯纳米复合材料的各项电化学性能最佳。  相似文献   

3.
用一釜水热合成法制备了硫化铜/还原氧化石墨烯纳米复合材料,改变前驱体中石墨烯含量,得到具有不同石墨烯含量的纳米复合材料。所制备的纳米复合材料首先和聚偏氟乙烯粘结剂混合,再涂覆在SnO2 _(x-)Fx基体上,得到以CdS敏化TiO2为负极的量子点太阳能电池的对电极,并与传统的Cu2 S/Cu对电极进行比较。用场发射扫描电子显微镜、X-射线衍射、拉曼光谱、循环伏安和阻抗谱技术表征了纳米复合材料对电极的微观结构和性能。结果表明:硫化铜/还原氧化石墨烯纳米复合材料优于Cu2 S/Cu对电极。前驱体中石墨烯的含量显著影响了硫化铜纳米晶的化学计量比和形貌。当前驱体石墨烯含量在中等水平下,获得了具有更多供S2_(-x)离子还原的活性位的优化的硫化铜/还原氧化石墨烯纳米复合材料。以此优化的纳米复合材料为对电极制备的量子点太阳能电池在100 mW/cm2的光照强度下具有高的、稳定的和可重复的_(2.)36%的能量转化效率,高于用Cu2 S/Cu为对电极的能量转化效率。此性能的提升归因于硫化铜纳米晶和导电的还原氧化石墨烯之间的协同作用,还原氧化石墨烯充当共催化剂和导电促进剂,降低对电极的内阻并加快多硫化物的还原。  相似文献   

4.
以自制聚苯胺水凝胶和氧化石墨烯为原料采用原位聚合法和溶液灌注法制备三维多孔结构的聚苯胺/氧化石墨烯复合材料,然后在氢碘酸的还原下制备聚苯胺/石墨烯复合材料。采用红外光谱法、场发射扫描电子显微镜和热重分析法对制备的复合材料的结构、形貌和组成进行表征,并采用三电极测试方式对其电化学性能进行测试。结果表明,氧化石墨烯的掺入能有效防止聚苯胺和氧化石墨烯的团聚和堆叠问题,获得了具有良好三维多孔结构的聚苯胺/氧化石墨烯复合物;聚苯胺/氧化石墨烯复合材料被氢碘酸还原后,得到的聚苯胺/石墨烯复合材料的热稳定性有所降低,但其比电容和导电性等有了很大的提高,在电流密度为0.5 A/g时,PANI/GO和PANI/r GO的比电容分别为240.38 F/g和321.91F/g。  相似文献   

5.
为研究还原剂对Ni(OH)_2/还原氧化石墨烯(RGO)复合材料结构及电化学性能的影响,首先以氧化石墨烯(GO)和硝酸镍作前驱体,采用水热法制备了Ni(OH)_2/RGO复合材料;然后,利用XRD、SEM和Raman光谱仪表征了复合材料的结构和形貌,并采用循环伏安法、恒流充放电曲线和电化学阻抗谱研究了复合材料的电化学性能。结果表明:以(NH2)2CSO2作还原剂时,制备的β-Ni(OH)_2/RGO复合材料为RGO纳米片与Ni(OH)_2纳米片相互插层的结构;在电解液(6mol/L KOH溶液)中,0.2C放电倍率时β-Ni(OH)_2/RGO复合材料的比容量高达341.0mAh/g,10.0C放电倍率为时复合材料的比容量为242.2mAh/g,仍能保持β-Ni(OH)_2理论比容量的83.8%。所得结论表明制备的Ni(OH)_2/RGO复合材料显现出良好的电化学性能。  相似文献   

6.
以稳定的过氧钼酸溶胶为前驱体,乙醇为弱还原剂,在水热条件下首先制备出单斜相MoO2纳米棒(直径约50nm,长度约200nm);在此基础上引入氧化石墨烯,采用二次水热法制备出石墨烯修饰MoO2纳米复合材料。通过X射线衍射、拉曼光谱、场发射电子扫描电镜和高分辨透射电镜对产物的物相结构和微观形貌进行表征,结果表明,二次水热法引入的碳的存在形式为多层石墨烯,且石墨烯的引入未对氧化钼的结构和形貌产生影响。将MoO2/石墨烯纳米复合材料装配成锂离子电池进行电化学性能测试发现:石墨烯和纳米棒的协同作用使得复合材料的充放电容量得到大大提高。二氧化钼纳米材料的首次放电比容量由112 mAh/g提高到1289 mAh/g,且循环稳定性良好。  相似文献   

7.
采用水热法在阳极氧化的TiO_2纳米管阵列上修饰MnO_2,制备MnO_2/TiO_2复合物电极,并组装为对称超级电容器。利用FESEM、TEM、XPS和电化学工作站对样品的表面形貌、元素价态和电化学性能进行表征。结果表明:MnO_2以纳米颗粒形态均匀分布在TiO_2纳米管阵列管口和内部,充放电电流密度在1A/g下时,比电容为429.3F/g,经5 000次循环后的电容保持率为82.4%。MnO_2/TiO_2对称超级电容器在电流密度5A/g下充放电比电容为39.9F/g,经5 000次循环后的电容保持率为91.5%;功率密度400 W/kg下,能量密度为18.98 Wh/kg。阳极氧化的TiO_2纳米管阵列既可做MnO_2的载体,基底Ti又可做集流体,减轻了超级电容器的质量,为制备超级电容器提供了一种思路。  相似文献   

8.
以氧化还原法制备石墨烯,通过水合肼还原得石墨烯,通过共沉淀法制备石墨烯/MnO_2复合材料,将所得的复合材料进行SEM和XRD分析,通过电化学性能测试及在铝空气电池中的应用,得出的不同石墨烯含量的石墨烯/二氧化锰的电化学性能,发现含石墨烯50%的GN/MnO_2的复合材料的效果最佳,在20,40,60,80,100和120mA/cm~2的电流密度下放电平台为1.25,1.06,0.95,0.87,0.80和0.76V。  相似文献   

9.
高性能电极材料的开发是推广新型储能器件的核心所在。二硫化钼(MoS_2)呈现类石墨烯结构,其二维层间具备良好的电荷储存能力。然而MoS_2本身导电性能较差,用于电极材料时需要与其它材料复合以提升导电性能。采用水热法,并分别选用抗坏血酸和硫脲作还原剂,制备得到两种不同形貌结构的纳米二硫化钼。以石墨烯为模板,采用水热法在石墨烯表面生长纳米结构MoS_2,制备得到二硫化钼-还原氧化石墨烯(MoS_2-RGO)纳米复合材料,通过循环伏安测试(CV)和恒电流充放电测试(CP)考察了复合材料的电化学性能。实验结果表明,MoS_2-RGO纳米复合材料呈现平面双电层电容性能,电流密度为1 A/g时,其比电容值达136.2 F/g。  相似文献   

10.
以间苯二酚(R)和甲醛(F)为炭前驱体原料, 通过溶胶-凝胶法制备石墨烯/炭气凝胶复合材料。采用XRD、Raman、SEM和N2吸附/脱附等对样品进行结构表征。结果表明: 石墨烯为R和F的聚合提供形核场所, R和F首先在氧化石墨烯(GO)表面聚合, 随着RF含量的增加, 复合炭气凝胶(RF)结构从石墨烯薄片层为骨架的三维网络, 经RF基炭球包裹于石墨烯的网络结构, 最终转变为球形团簇交联的三维网络。石墨烯/炭气凝胶复合材料的比表面积随着RF的增加先增大后减小。当GO与RF质量比为1︰100时, GO/RF-100用作超级电容器电极材料, 在6 mol/L KOH电解液中的比电容达169 F/g, 具有较好的电容特性。  相似文献   

11.
氢氧化镍/还原氧化石墨烯复合物的超级电容性能   总被引:1,自引:0,他引:1  
黄振楠  寇生中  金东东  杨杭生  张孝彬 《功能材料》2015,(5):5084-5088,5094
采用共沉淀法制备了氢氧化镍/还原氧化石墨烯复合材料,并以此为电极研究了其超级电容性能。实验发现,六方氢氧化镍纳米片被成功插入到还原氧化石墨烯的层间,这有效抑制了还原氧化石墨烯和氢氧化镍的团聚,提高了电极的稳定性。当氢氧化镍和还原氧化石墨烯的质量比为5.5∶1时,显示了最佳的电化学性能:在-0.1~0.37V的电位窗口,1A/g的电流密度下,比电容高达1 036F/g;4A/g的电流密度下快速循环3 000次后,仍然保持70%的比电容。  相似文献   

12.
基于绿色可再生的剑麻纳米纤维素,采用超声分散方法制备剑麻纳米纤维素/石墨烯(CNF/G)分散液,通过机械共混法制备剑麻纳米纤维素/石墨烯/聚苯胺(CNF/G/PANI)复合材料,采用红外光谱、X射线衍射、拉曼光谱和扫描电镜对复合材料的结构和形态进行表征,采用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能,侧重研究石墨烯的种类对CNF/G/PANI复合材料电化学性能及结构的影响。结果表明,加入石墨烯纳米片(GNS),聚苯胺(PANI)和剑麻纳米纤维素(CNF)穿插于GNS中,产生较多的孔洞,复合材料的比电容最高值达到322.25 F/g,内阻仅为0.77Ω,在5 A/g的电流密度下,循环充放电1000次,复合材料的电容保持率达到76.92%。  相似文献   

13.
为制备新型高效去除甲醛材料,采用水热法制备了还原氧化石墨烯(RGO)/MnO_2气凝胶,通过SEM、TEM、TGA、XPS和BET对RGO/MnO_2气凝胶的形态结构及性能进行了表征,并研究了RGO/MnO_2气凝胶对甲醛的去除能力。结果表明:在RGO/MnO_2气凝胶的前驱体中,氧化石墨烯(GO)为单层二维纳米材料;MnO_2气凝胶由MnO_2纳米线组成,MnO_2纳米线的直径在40nm左右,长度达5μm以上,且属于隐钾锰矿型结构。RGO/MnO_2气凝胶是一种由片状材料组成的具有三维多孔结构的材料,该片状材料是由均匀分布的RGO纳米片和MnO_2纳米线组成的,RGO将MnO_2纳米线隔开,起到隔板的作用,使MnO_2纳米线在RGO中均匀分布。RGO/MnO_2气凝胶在100℃以下具有良好的热学稳定性。RGO/MnO_2气凝胶对低浓度甲醛具有较好的去除能力,去除率为62.5%,与MnO_2气凝胶相比,相同条件下RGO/MnO_2气凝胶对甲醛的去除率提高了30.0%,证实RGO有助于提高MnO_2对甲醛的去除能力。  相似文献   

14.
采用水热法以钼酸铵、氧化石墨烯和硫脲作为原料制备得到不同石墨烯含量的MoS_2/石墨烯复合材料。利用XRD、Raman、SEM、TEM和电化学测试对复合材料的形貌、结构和电化学性能进行了表征。结果表明,氧化石墨烯和钼酸根离子被成功地还原成MoS_2/石墨烯复合材料,同时MoS_2纳米片均匀地分散在石墨烯表面上。当氧化石墨烯为800mg时复合材料的电化学性能最佳,在电流密度为1A/g时,比容量高达310F/g,经过500次循环后比容量仍保持在230F/g。以上研究结果说明,石墨烯片层的介入有效地阻碍了MoS_2纳米片的堆叠,提高复合材料的比容量和循环稳定性。  相似文献   

15.
采用化学氧化法制得氧化石墨烯(GO),再用NaBH4还原得到石墨烯(GN);以二氧化锰为氧化剂,室温下通过化学氧化聚合法制备了聚苯胺/石墨烯复合材料(PANI/GN)。采用扫描电子显微镜(SEM)及X-射线衍射(XRD)对其结构和形貌进行了表征。以PANI/GN为活性物质制备电极,1.0mol/L H2SO4水溶液为电解液组装超级电容器,用循环伏安法(CV)和恒电流充放电技术分别测试了PANI/GN电化学性能,在0.1A/g的电流密度下的比容量为468.5F/g,经过1000次连续充放电,电容保持率为84.9%。与PANI、GN单一材料相比,PANI/GN复合物具有较高的比电容和很好的循环稳定性。  相似文献   

16.
以氧化石墨烯(GO)为基体,采用界面聚合法制备了聚苯胺纳米纤维/氧化石墨烯的复合物(PA-NI/GO),经水合肼还原和APS再氧化得到聚苯胺纳米纤维/石墨烯复合物(PANI/GR)。用FT-IR、UV-Vis、XRD、SEM和TEM对复合物的结构和形貌进行表征,结果表明氧化石墨烯不仅为苯胺提供了聚合的基体,同时对聚苯胺有掺杂作用,聚苯胺纤维夹在片状石墨烯之间呈现"三明治"结构。通过循环伏安和恒流充放电测试发现,PANI/GR复合材料表现出双电层电容和法拉第赝电容双重特点,受协同效应的作用,在电流密度为400mA/g时,比容量高达460F/g,呈现出优异的电化学活性。  相似文献   

17.
以改进的Hummers法制备的氧化石墨烯为基底,以氯金酸为氧化剂和金源,原位聚合苯胺单体,一步制得氧化石墨烯/聚苯胺/金(GO/PANI/Au)三元复合材料。形貌和成分分析结果表明,氯金酸成功地将苯胺氧化成聚苯胺,并被还原生成金纳米颗粒。电化学性能测试结果表明,随着氧化剂用量的增加,三元复合材料的比电容呈现先增大后减小的趋势,当氧化剂加入量为0.03mmol时,所制备的三元复合材料比电容最大,在1A/g电流密度、1mol/L H2SO4电解液中比容量达327F/g,在15A/g电流密度下容量保持率也高达81%。  相似文献   

18.
陈鹏  徐朝阳 《包装工程》2019,40(15):92-97
目的 以纳米纤维素气凝胶为骨架,对苯二酚为增强相,并加入还原氧化石墨烯,制备纳米纤维素/还原氧化石墨烯复合电极薄膜,将其应用于超级电容器。方法 采用超声处理制备纳米纤维素/氧化石墨烯混合溶液;在高温高压的环境下,加入对苯二酚,采用水热合成法和冷冻干燥法制备纳米纤维素/还原氧化石墨烯气凝胶,并最终制成电极膜。结果 在纳米纤维素/还原氧化石墨烯复合气凝胶中,石墨烯可将纳米纤维素均匀包裹,形成三维多孔网络结构;纳米纤维素/还原氧化石墨烯复合电极具有良好的电化学性能,在1 mol/L的H2SO4溶液中,当电流扫描速率为1 mA/cm2时,超级电容器比面积电容高达1.621 F/cm2,且在2000次循环测试后,电容保留率为88.3%。结论 以纳米纤维素为基体制备的纳米纤维素/还原氧化石墨复合电极具有良好的电化学性能,可以用作超级电容器电极。  相似文献   

19.
采用两步法制备出均匀分散的SnO2/还原氧化石墨烯(SnO2/RGO)二元复合物,再以二元复合物为模板,通过化学氧化法聚合吡咯(Py)单体,制备出SnO2/还原氧化石墨烯/聚吡咯(SnO2/RGO/PPy)三元复合材料。利用红外光谱(FTIR)、X射线衍射(XRD)和场发射扫描电镜(FESEM)对复合材料结构和形貌进行物性表征,利用循环伏安、恒电流充放电和交流阻抗对复合材料进行电化学性能研究,并讨论了不同含量的PPy对复合材料的结构和性能的影响。结果表明,所合成的三元复合材料的比电容随PPy含量的增加而增大,最大达到305.3F/g。三元复合物电容性能增强源于SnO2、RGO与PPy三者的相互协同作用,以及材料层状结构和大的比表面积。  相似文献   

20.
通过3种不同的方法处理制备超级电容器粉末材料的前驱体,其得到MnO_2/纳米炭球(NCs)复合粉末。利用X射线衍射(XRD)、场发射扫描电镜(FSEM)、比表面积测试(BET)等方法对样品粉末性质进行分析,对3种不同方法得到的粉末进行循环伏安、恒流充放电测试,结果表明,保持有前驱体形貌的MnO_2/NCs粉末样品具有良好的电容性能,在5~50 mV的扫描速率下,其比容量保持率分别为80.3%和88%。MnO_2成网络状包覆纳米炭球(NCs)的样品,具有最高的比容量122.6 F/g,其网络状的结构使其拥有较高的比容量与倍率性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号