首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 520 毫秒
1.
周松  贾耀雄  许良  边钰博  涂宜鸣 《材料工程》2021,49(10):138-143
对T800碳纤维/环氧树脂基复合材料进行湿热老化实验,通过质量变化、老化前后表面形貌、红外光谱、动态力学性能,层间剪切和压缩实验,研究3.5%(质量分数,下同)NaCl溶液和去离子水两种介质分别在70℃下溶液浸泡对碳纤维/环氧树脂基复合材料力学性能的影响.结果表明:T800碳纤维/环氧树脂基复合材料在去离子水和3.5%NaCl溶液中的吸湿率相对较低,分别为0.82%和0.67%;未老化试样纤维与基体之间黏结良好,在3.5%NaCl溶液老化后纤维与基体界面破坏相比去离子水中老化更严重;经去离子水中浸泡后剪切强度降低8.8%,压缩强度降低4.3%;在3.5%NaCl中浸泡后剪切强度降低10.1%,压缩强度降低4.7%.在两种溶液老化后试样的Tg降低,但相差不大.此次研究结果对T800碳纤维/环氧树脂基复合材料在腐蚀环境中的应用提供了依据.  相似文献   

2.
不同热氧环境(70,130,190℃)对碳纤维复合材料的性能有着重要的影响。分析了不同热氧环境下T800碳纤维/环氧树脂复合材料的失重特性,并对比了老化前后的表面形貌、红外光谱、动态力学性能和层间剪切性能。结果表明:在热氧老化初始阶段,质损率急速上升,老化温度越高质量损失越快;试样表面形貌随热氧温度的升高其破坏程度逐渐加剧,在190℃老化后,纤维表面树脂脱落严重,纤维与纤维之间出现裂缝空隙,无树脂填充,在此老化温度下,试样发生了不可逆化学变化;试样的玻璃化转变温度会随老化温度的升高而变大,但内耗呈现先降低后增大再降低的趋势,在70,130,190℃热氧老化后试样剪切强度分别提高6.0%,13.7%和2.1%。相关实验结果和实验现象可为后续研究新型国产T800碳纤维/环氧复合材料提供数据参考。  相似文献   

3.
不同老化环境(湿热、热水、热氧)对复合材料的性能有着重要的影响。文中分析了同一温度不同老化环境下T800碳纤维/环氧树脂基复合材料的吸湿(湿热、热水)和失重(热氧)特性,并对比了老化前后的表面形貌、物理化学特性、动态力学性能及层间剪切性能。结果表明,在相同温度下,热氧环境下的失重率要大于湿热和热水环境下的吸湿率;随着老化时间延长,热氧环境下材料表面形貌变化相比湿热和热水环境变化较大;在70℃不同老化环境下,热氧环境下材料的玻璃化转变温度变化值要大于湿热和热水环境下的玻璃化转变温度变化值,说明热氧对T800碳纤维/环氧树脂基复合材料基体的后固化作用大于吸湿对树脂基体的塑化作用,但材料化学官能团没有明显变化。与未老化相比,试样的最大破坏载荷和剪切强度在湿热和热水环境下降低,在热氧环境下升高,但差值不大。研究对T800碳纤维/环氧树脂基复合材料结构件在更复杂环境下的使用和贮存具有重要的工程实际意义。  相似文献   

4.
碳纤维增强环氧树脂复合材料(CFRP)综合性能优异,广泛用于国防军工、航空航天等领域。文中针对CFRP在海洋气候环境下的实际应用需求,研究了具有产品结构特征的NOL环及层压板试样在高温、高浓度盐雾(55℃,10%NaCl)条件下的盐雾腐蚀行为,并通过研究材料在老化过程中的吸湿行为、盐分扩散行为及树脂分子/交联网络结构及体系界面结构的演变,探究了其老化分子机理及界面损伤机制。其老化过程可分为3个阶段,在此期间水分子对树脂的溶胀与塑化作用、纤维-基体湿膨胀系数不匹配诱发的界面损伤作用及盐分/水分对树脂的腐蚀断链作用均可导致体系交联密度降低、界面脱粘及基体破碎,诱使材料力学及界面强度劣化。老化90 d后,NOL环及层压板试样的层间剪切强度(ILSS)保留率分别为73.75%及84.10%。  相似文献   

5.
针对南海地域的自然环境,将T700/5288炭纤维增强环氧树脂复合材料放置于海南省万宁市,经过自然老化3年后,研究其微观形貌、力学性能与热性能等。研究表明,由于热氧老化与光氧老化的存在,复合材料表层环氧树脂出现了化学降解,表面纤维发生裸露,起毛等现象,老化试样纵向压缩强度降低19%,横向压缩强度降低14%,其他表征力学性能基本不变,玻璃化转变温度降低了27℃。  相似文献   

6.
碳纤维增强聚合物基复合材料(CFRP)因其耐腐蚀、轻质高强等特点被广泛应用于海洋环境,进而长期遭受湿热环境的考验。为了解湿热环境和极端温度对碳纤维增强乙烯基树脂复合材料的影响,测试了湿热老化前后和不同温度下CFRP的压缩性能、面内剪切性能和层间剪切强度变化。FTIR和SEM结果表明:纯树脂试样在湿热环境中发生了水解,使试样表面的微裂纹和孔隙不断扩展并向试样内部渗透;碳纤维的埋入抑制了水的扩散和水解,因而CFRP的吸湿曲线与Fickian模型高度吻合;纯树脂由于水解反应影响了吸湿通道使吸湿曲线偏离Fickian模型。力学性能表明:湿热老化90天后压缩强度和层间剪切强度分别降低7.6%、12.3%;试样在高温(70℃)下的压缩强度、面内剪切强度、层间剪切强度分别急剧降低36.2%、26.9%、37.4%,且高温对试样力学性能的影响具有部分可逆性。  相似文献   

7.
研究了三维正交机织玄武岩/环氧树脂复合材料在180℃高温环境下老化不同时间后的低速冲击力学性能,测试得到了不同老化时间的试样在低速冲击过程中的载荷-位移曲线。研究发现:随着老化时间增加,三维正交机织玄武岩/环氧树脂复合材料能承受的最大载荷下降,位移逐渐增加,载荷-位移曲线斜率逐渐下降;随着冲击能量增加,老化条件相同的三维正交机织玄武岩/环氧树脂复合材料试样最大承受载荷增大,位移和曲线斜率增加。对高温老化后三维正交机织玄武岩/环氧树脂复合材料试样进行SEM观察,发现纤维与树脂基体脱粘有裂纹产生,且裂纹数目和面积随着老化时间延长而增加。   相似文献   

8.
对HKT800碳纤维表面形貌、元素、官能团等进行了表征分析;对AG80环氧树脂配方体系进行了优化;然后对HKT800碳纤维/AG80环氧树脂复合材料的力学性能及界面情况进行了测试分析。结果表明,HKT800碳纤维具有比较高的表面活性,表面元素的O/C、N/C比例分别达到了25.2%,4.5%,活性与非活性碳原子之比达到0.91;质量比为100∶30∶3时,AG80/DDS/BF3·MEA树脂体系能够在150℃的工艺条件下固化;HKT800碳纤维/AG80环氧树脂复合材料0°拉伸、弯曲和压缩强度分别达到2 682,1 874和1 639 MPa,层间剪切强度为110 MPa。  相似文献   

9.
采用尼龙无纺布(PNF)作为结构化增韧层,制备了PNF层间增韧改性的U3160碳纤维增强3266环氧树脂(U3160-PNF/3266)复合材料,研究了U3160-PNF/3266复合材料的面内力学性能及湿热老化后的力学性能变化,并分析了复合材料湿热老化前后的层间形貌。结果表明:PNF增韧层的引入并未导致复合材料面内力学性能的下降,与未增韧的U3160碳纤维增强3266环氧树脂(U3160/3266)复合材料相比,增韧复合材料U3160-PNF/3266的90°拉伸性能有所提高。而湿热老化处理对U3160-PNF/3266复合材料的基体和界面性能影响相对明显,尤其是尼龙纤维与树脂基体之间的界面结合性能,湿热老化处理后增韧复合材料的90°压缩和层间剪切性能保持率均明显低于未增韧复合材料的。  相似文献   

10.
采用实验和有限元方法,研究了三维编织碳纤维/环氧树脂复合材料在低温场(20、0、-50、-100℃)中横向压缩性质温度效应。研究结果表明:温度对碳纤维/环氧树脂横向压缩模量、屈服应力及切向模量均有不同程度影响。三维编织碳纤维/环氧树脂复合材料横向压缩后,试样表面形貌受温度影响显著。低温场中,表面鳞纹现象减弱,且纱线-树脂间界面出现开裂。温度降低导致碳纤维/环氧树脂内部产生热应力。热应力对碳纤维/环氧树脂力学性能影响有限,不是温度效应的主导因素。基体性质随温度变化是三维编织碳纤维/环氧树脂复合材料横向压缩性质温度效应的主要机制。  相似文献   

11.
为验证复合材料的耐久性,对T700碳纤维增强环氧树脂基复合材料经自然老化后的微观形貌、表面元素含量、热性能与力学性能等进行了研究。结果表明: 在光氧老化与热氧老化的共同作用下,T700碳纤维增强EP-A环氧树脂基(T700/EP-A)复合材料表层树脂将发生老化降解,并且随自然老化时间的延长,T700/EP-A复合材料的玻璃化转变温度逐渐降低,未老化试样的玻璃化转变温度为207℃,经过自然老化处理3年后,其玻璃化转变温度降低为180℃,延长自然老化时间至5年时,其玻璃化转变温度进一步降低至172℃。而自然老化过程对复合材料力学性能可能同时存在着增强效应与损伤效应,因此造成了T700/EP-A与T700/EP-B复合材料的不同力学性能表现出相异的变化趋势。随自然老化时间延长,T700/EP-A与T700/EP-B复合材料纵向拉伸强度表现出先升高后降低的趋势,纵向弯曲强度表现出逐渐升高的趋势,纵向压缩强度与层间剪切强度存在波动,未呈现出明显变化。   相似文献   

12.
碳纤维表面状态对其复合材料界面性能的影响   总被引:1,自引:1,他引:0  
为了研究上浆剂和湿热处理对复合材料微观界面性能的影响,通过单丝断裂实验测试去浆处理及湿热处理前后T300、T700SC、T800S碳纤维单丝/环氧树脂体系的界面剪切强度(IFSS),结合扫描电镜测试手段分析了纤维表面物理特性对IFSS的影响.结果表明:去浆及湿热处理均会引起三种单丝复合材料体系IFSS降低,断点形貌由X状向鞘状发生变化,但不同的单丝复合体系IFSS降幅以及断点形貌变化程度不同;去浆后,T700SC/环氧树脂体系IFSS降幅达70.67%,T300/环氧树脂体系仅下降6.05%;湿热处理72 h后,T300/环氧树脂体系IFSS下降幅度最小;湿热作用下,去浆后的单丝/环氧树脂体系IFSS的下降更为显著.  相似文献   

13.
建立了单丝断裂双树脂体系法, 利用外层树脂的韧性使包埋于内层脆性树脂中的纤维单丝断裂达到饱和, 解决了断裂伸长率较低的树脂基体采用传统的单丝断裂法无法测得界面剪切强度的问题。分别采用界面剪切强度和界面断裂能作为表征参量, 考察了干态及湿热条件下两种T300级和两种T800级碳纤维/环氧树脂的界面性能, 并与单丝断裂单树脂体系的界面性能进行比较。结果表明: 单丝断裂双树脂体系与单树脂体系在表征碳纤维/环氧树脂的界面性能上定性规律一致; 双树脂体系界面断裂能和界面剪切强度均可评价界面的耐湿热性能, 且二者得到的变化规律一致; 湿热处理后界面粘结性能均呈下降趋势, 国外碳纤维体系的界面耐湿热性能明显优于国产碳纤维体系。  相似文献   

14.
磷酸处理芳纶纤维的缠绕环氧树脂基体   总被引:1,自引:0,他引:1       下载免费PDF全文
在用磷酸(PA)溶液处理芳纶纤维的基础上, 系统研究了适用于制备高性能芳纶纤维增强复合材料的缠绕环氧树脂基体, 测试了复合材料的力学性能和热机械性能, 讨论了树脂基体对芳纶纤维增强复合材料界面性能的影响。结果表明: 经过磷酸溶液处理的芳纶纤维表面存在一定量的极性官能团, 与缩水甘油酯类环氧树脂有良好的界面相容性; 经过优化的树脂体系其芳纶纤维增强复合材料的NOL环(Naval Ordnance Laboratory Ring)纤维强度转化率达到95%, 层间剪切强度(ILSS)达到79MPa, 界面剪切强度(IFSS)达到76MPa, 具有较好的界面性能。   相似文献   

15.
针对环氧树脂脆性大、与碳纤维形成的界面性能较差等问题,本文选用纳米TiO2对5284环氧树脂进行改性,并以角联锁机织物为增强体制备了碳纤维/环氧树脂复合材料。使用FT-IR、旋转流变仪、表面张力仪等设备对TiO2/环氧树脂进行表征,并研究了树脂改性对复合材料压缩与层间剪切性能的影响。研究表明:TiO2的羟基与环氧树脂的环氧基和羟基发生了反应;经1wt.%TiO2改性的树脂复数黏度为0.066 Pa·s,纤维与树脂间接触角为28.85°,浸润效果较好;相较于未改性复合材料,树脂改性的复合材料纵向压缩强度与模量分别提高了7.46%和11.03%,横向压缩强度与模量分别提高了6.99%和4.96%,纵向、横向的剪切强度分别提高了6.88%和4.65%。TiO2改性环氧树脂提高了复合材料的承载能力,改善了界面结合强度。  相似文献   

16.
对比研究了环氧5228A树脂及碳纤维/环氧5228A树脂复合材料层合板在3种湿热环境(水煮、70℃水浸,70℃85%相对湿度)下的湿热性能,考察了湿热条件对复合材料层间剪切性能的影响规律,并从吸湿特性、物理化学特性、树脂力学性能、湿应力等方面分析了不同湿热环境下复合材料性能衰减的机制。研究表明,碳纤维/高温固化环氧树脂复合材料层间剪切性能主要是由吸湿率决定,相同吸湿率不同湿热条件下性能的下降幅度基本相同;3种湿热条件下该树脂及其复合材料未发生化学反应、微裂纹等不可逆变化,复合材料层合板湿热老化机制主要是吸入水分后基体增塑和树脂、纤维湿应变不一致导致的湿应力对复合材料性能的负面作用。  相似文献   

17.
将连续炭纤维束用自制的空气梳分散成单丝状长带后, 通过采用循环伏安法的电化学方法将单体苯酚在炭纤维表面聚合成膜, 对炭纤维进行表面修饰, 以提高复合材料中炭纤维与树脂基体的界面粘结性能。红外光谱分析表明, 苯酚电聚合膜能够增加炭纤维表面的羟基、 醚键等活性官能团, 从而提高炭纤维与环氧树脂基体的界面粘结强度。与未进行表面修饰的炭纤维增强环氧树脂复合材料相比, 以聚苯酚膜修饰的炭纤维单丝带增强的环氧树脂基复合材料横向拉伸强度最大提高了90%, 纵向拉伸强度最大提高了45%, 层间剪切强度最大提高了110%。实验也表明, 将炭纤维束分散成炭纤维单丝带后能够更有效地增强复合材料的各项力学性能。   相似文献   

18.
欧秋仁  嵇培军  肖军  武玲  王璐 《材料工程》2019,47(8):125-131
基于飞行器减重对耐高温结构复合材料的应用背景,为了拓展国产T800碳纤维增强氰酸酯复合材料体系的应用,通过对国产T800碳纤维表面上浆剂的分析,开展适于国产T800碳纤维的氰酸酯树脂基体配方设计,研究国产T800碳纤维/氰酸酯复合材料的力学性能和耐热性能,分析树脂基体对复合材料界面性能的影响。结果表明:国产T800碳纤维表面上浆剂中含有环氧基团。配方优化后的氰酸酯树脂与国产T800碳纤维复合后,复合材料的室温-湿态力学性能保持率大于74.8%,200℃力学性能保持率大于57%,玻璃化转变温度为226℃,具有优异的热机械性能和界面性能。  相似文献   

19.
樊威  李嘉禄 《复合材料学报》2015,32(5):1260-1270
为了探索增强体结构对碳纤维增强聚合物基复合材料(CF-PMCs)热氧老化后弯曲性能的影响,对三维四向编织碳纤维/环氧复合材料(简称为三维编织复合材料)和层合平纹碳布/环氧复合材料(简称为层合复合材料)的热氧老化性能进行了研究。利用FTIR、老化失重、弯曲测试和SEM等手段分析了热氧老化前后的试样。结果表明:热氧老化导致基体树脂的氧化断链以及纤维/基体界面结合力的退化是两种复合材料弯曲强度和弯曲模量下降的原因,弯曲强度比弯曲模量更容易受热氧老化的影响。在相同的热氧老化条件下,层合复合材料的热氧老化失重大于三维编织复合材料的,而三维编织复合材料的弯曲强度和弯曲模量保留率均大于层合复合材料的。在140℃下老化1 200h后,层合复合材料的弯曲强度和弯曲模量保留率分别为74.7%和88.3%,而对应的三维编织复合材料的分别为79.4%和91.5%。因此,采用三维编织预制件作为CF-PMCs的增强体是一种有效的提高其热氧稳定性的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号