首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 32 毫秒
1.
针对传统A*算法规划的路径存在很多冗余点和拐点的问题,提出了一种基于A*算法改进的高效路径规划算法。首先,改进评价函数的具体计算方式,减小算法搜索每个区间的计算量,从而降低寻路时间,并改变生成路径;其次,在改进评价函数具体计算方式的基础上,改进评价函数的权重比例,减少生成路径中的冗余点和拐点;最后,改进路径生成策略,删除生成路径中的无用点,从而提高路径的平滑性;此外,考虑到机器人的实际宽度,改进后算法引入障碍物扩展策略保证规划路径的可行性。将改进A*算法与三种算法进行仿真对比,实验结果表明,改进后的A*算法规划的路径更加合理,寻路时间更短,平滑性更高。  相似文献   

2.
针对复杂海洋环境下水面舰艇航路规划时出现的大地图寻路速度慢、航路安全性差、航路不平滑等难题,结合电子海图提出了一种改进A*算法的航路规划方法。提出一种自适应的改进启发函数,在搜索节点时加入目标节点的方位信息,加快了A*算法搜索路径的速度;加入迫使航路远离障碍物的安全距离,解决了传统A*算法沿障碍物边缘寻路导致航路安全性差的问题;对原始航路进行二次优化,在对原始路径提取转折点后,通过判断任意两个转折节点的直线可达性,将转折节点之间的实际距离转化为距离矩阵,使用Dijkstra算法优选出航路长度更短的关键转折点,最终使用二阶贝塞尔曲线对航路转折处进行平滑处理,以满足航路平滑且易跟随的要求。仿真实验表明,相对于传统A*算法,改进算法规划的路径具有寻路速度更快、航路距离更短、航路安全性更高的特点。  相似文献   

3.
由于A*算法所规划的路径存在着转折次数多,路径不平滑,路径贴合障碍物和初始时刻转折角度过大等不符合车辆运动学的问题。为了解决上述问题,获得适用于智能车的优化路径,本文通过对车辆运动学建模得到车辆的约束,同时在估价函数中加入车身轮廓代价和障碍物距离代价,并将车辆约束加入到A*算法的启发函数和路径优化中,再使用贝塞尔曲线拟合转折点,使A*算法所生成的路径更加符合车辆的运动学。通过分析改进A*算法可知,改进后的算法所规划的路径更加平滑、合理且符合车辆的运动特性。  相似文献   

4.
针对传统A*算法在场景较大的栅格地图路径规划时,很多冗余节点的遍历导致寻路算法内存消耗大、计算速度慢等问题,提出了一种对A*算法的改进策略.首先,改进启发函数的具体计算方式,利用切比雪夫距离替代欧氏距离使启发式函数精确地等于实际最佳路径,减少A*节点的拓展数量;其次,使用跳点搜索(JPS)策略筛选出跳点添加到OpenList和ClosedList代替A*算法中大量不必要的邻节点,通过跳点实现较长距离的跳跃,从而减少内存占用以及对节点的评估,直到生成最终路径.为了验证A*算法改进后的效果,在五种尺寸的二维栅格地图中进行仿真测试,结果表明,改进后的A*算法减少了大量寻路过程评估的节点,提高了寻路速度,并且随着地图尺寸的增加,改进后的A*算法能将寻路速度提高一个数量级以上.最后,将改进后的算法应用在移动机器人路径规划器上进行实验,在同一规划任务下,JPS策略下改进的A*算法较传统A*算法,路径搜索耗费时间减少了92.2%,拓展的节点减少了97.37%,能够满足大场景下移动机器人快速路径规划的要求.  相似文献   

5.
针对A*算法缺乏动态性、不够平滑、计算量大,且不满足具体的非完整约束等问题,提出一种融合改进A*算法和lattice算法的路径规划方法.一方面消除传统A*算法中的冗余点,同时考虑物体的方向属性和实际运动约束,优化启发式函数最终生成全局路径.另一方面lattice根据改进A*算法生成的全局路径作为参考线,采样并结合障碍物信息和其他代价信息选出平滑的、无障碍的包含位置、移动速度、移动加速度等信息的局部轨迹.使用栅格地图进行车辆路径规划的实验仿真,该算法能够兼顾全局与局部,快速规划出一条平滑且满足车辆非完整性约束的运动路径.  相似文献   

6.
煤矿履带式定向钻机路径规划过程中存在机身体积约束和实际场景下的行驶效率需求,而常用的A*算法搜索速度慢、冗余节点多,且规划路径贴近障碍物、平滑性较差。提出一种以改进A*算法规划全局路径、融合动态窗口法(DWA)规划局部路径的煤矿履带式定向钻机路径规划算法。考虑定向钻机尺寸影响,在传统A*算法中引入安全扩展策略,即在定向钻机和巷道壁、障碍物之间加入安全距离约束,以提高规划路径的安全性;对传统A*算法的启发函数进行自适应权重优化,同时将父节点的影响加入到启发函数中,以提高全局路径搜索效率;利用障碍物检测原理对经上述改进后的A*算法规划路径剔除冗余节点,并使用分段三次Hermite插值进行二次平滑处理,得到全局最优路径。将改进A*算法与DWA融合,进行煤矿井下定向钻机路径规划。利用Matlab对不同工况环境下定向钻机路径规划算法进行仿真对比分析,结果表明:与Dijkstra算法和传统A*算法相比,改进A*算法在保证安全距离的前提下,加快了搜索速度,搜索时间分别平均减少88.5%和63.2%,且在一定程度上缩短了规划路径的长度,路径更加平滑;改进A*算法与DWA融合算法可有效躲避改进A*算法规...  相似文献   

7.
标准A*算法存在着无法考虑移动机器人运动特性及处理后的路径不利于移动机器人运动等问题。针对这一问题提出了一种新改进A*算法,通过环境信息引入障碍物权重系数来改进算法的启发函数并进行全局路径规划;优化搜索节点的选取方式和设定障碍物与路径之间的安全距离;基于对移动机器人的运动特性的考虑优化其路径,并在不同环境地图中与其他算法进行仿真实验对比分析。相关实验表明:基于新改进A*算法规划的路径始终与障碍物保持一定的安全距离;改进A*算法在时间上相比标准A*算法平均减少了80%,路径长度平均减少了2%,路径转角平均降低了82%。改进后算法相比其他算法在时间、搜索节点以及平滑度上有很大的改进,融合机器人环境信息和运动特性的规划路径算法可为移动机器人的路径规划提供一种新的方法。  相似文献   

8.
针对存在动态障碍的复杂海洋环境中无人艇的应用,提出了基于改进A*和DWA的无人艇路径规划算法.在全局路径规划时,基于动态改变步长方法设计了一种改进的快速平滑A*算法,克服了传统A*算法存在的大范围搜索时效率低下、生成路径不平滑等缺点,基于无人艇传感及导航信息,通过在DWA的评价函数中增加路径偏差项,将全局规划与局部规划相结合,实现了动态环境下无人艇的路径规划.仿真实验结果表明,该算法相比传统A*算法,规划的路径平滑,运行效率提升了约30倍,并可以躲避环境中可能存在的动态障碍,确保无人艇安全、高效地到达目标点.  相似文献   

9.
传统批通知树(batch informed trees,BIT*)算法结合了RRT*算法和A*算法的优势,但是该算法在复杂环境下无法躲避未知的动态障碍物,无法完成动态路径规划。针对该问题,提出了一种将改进的BIT*算法和改进的DWA算法相融合的算法。在传统BIT*算法的基础上对路径进行拉伸优化,提取关键转折点,减少路径长度;对传统DWA算法的距离评价函数进行改进、引入轨迹点评价函数,避免局部规划过分偏离,也减少了已知障碍物对路径的影响;将改进的BIT*算法与改进的DWA算法相融合,将提取的关键转折点作为DWA的中间目标点,弥补全局规划算法无法躲避动态障碍物的缺点以及局部规划算法全局能力低下的缺点。在动静态地图中对RRT*算法、BIT*算法、DWA算法、改进BIT*算法以及融合算法进行仿真实验,仿真结果表明:在复杂环境中,改进的BIT*算法具有更短的路径和更少的拐点;与传统的DWA算法相比,融合算法规划的路线更平滑,机器人既能实时动态避障抵达终点,又能更加贴近全局路径,保证路线全局最优。  相似文献   

10.
A*算法广泛应用于移动机器人路径规划中,而传统A*算法在寻路时,普遍存在搜索时间较长、效率低下等问题,因此,采用双向搜索的方式,对传统A*算法加以改进,该算法在路径规划过程中,可同时进行正反向路径搜索,同时采用正反向搜索交替机制,保证了最终目标节点搜索在连线中点区域内相遇,从而缩短了寻路计算时间。在MATLAB平台上,针对改进后的A*算法进行仿真实验,结果证明,双向A*算法减少了规划时间,且可生成最优路径。最后,将该算法应用到基于开源机器人操作系统的Turtlebot2移动平台上,进行现场实验,实验结果表明,双向A*算法减少了寻路计算时间,从而使得路径搜索效率得到显著提升,且规划路径合理,满足路径规划要求。  相似文献   

11.
A*算法常用于二维地图的路径规划,但是在利用其进行室内移动机器人路径规划时,存在过多的冗余点和拐点,造成了内存消耗过大和路径不平滑。针对上述问题,提出了一种改进的A*算法。结合跳跃点搜索理论,利用先验信息,用选取的关键点代替了传统A*算法中Openlist和Closelist的点,减小了计算量,提高了运算速度。运用反向搜索策略,对路径进行二次规划,删除不必要的转折点,降低了路径长度。将路径在转折点处进行动态圆平滑处理,提高了路径的平滑性。为了验证改进A*算法的性能,将其应用于不同尺寸仿真栅格环境地图和处于真实室内环境的机器人中,实验结果表明,在相同环境下,改进算法相较于传统的A*算法,在运行时间、路径长度和平滑程度上均有明显的提高。  相似文献   

12.
无人机在有障碍物的三维空间环境中飞行,采用常规A*算法进行避障航线的规划存在搜索节点多、搜索区域大、搜索时间长、搜索效率低、生成的航线拐角多且含有大量非必要冗余航点、没有考虑无人机自身体积与尺寸而引发的飞行中与障碍物边界碰撞的航线不安全等问题。因此,设计一种改进A*算法,首先,考虑无人机本身体积与尺寸,提出一种消除边界碰撞事故的子节点扩展方法;其次,改进评价函数,减少往复搜索次数,缩小搜索区域面积,提高搜索效率;然后,根据Floyd思想,对生成的航线进行简化处理,消除航线中的冗余航路点,减少航线转角数量,达到简化航线并改善航线平滑度的效果;最后,非线性仿真及飞行试验表明了改进的A*算法生成的航线更加安全、高效,并使无人机的飞行连续和顺畅。  相似文献   

13.
基于A*的双向预处理改进搜索算法   总被引:1,自引:0,他引:1  
本文针对传统A*算法存在冗余路径点较多与单向搜索耗时较长的缺点,提出了一种改进A*算法.该算法采用双向预处理结构减少冗余节点数,并通过归一化处理和增加节点标记信息进一步优化估价函数提高遍历速度.利用仿真软件对改进A*算法进行实验,并与其它经典路径规划算法进行比较.仿真结果表明,改进后的A*算法较于传统A*算法能以较低的搜索节点数和搜索时长较好的完成全局路径规划.  相似文献   

14.
传统A*算法是移动机器人全局路径规划的常用算法之一,但是算法搜索效率低、规划路径转折点多、面对复杂环境中随机出现的动态障碍物无法实现动态路径规划。针对这些问题,在考虑全局最优的基础上将改进A*与DWA算法融合,量化环境中的障碍物信息,根据此信息调节A*算法启发函数的权重,提高算法的效率和灵活性。基于Floyd算法思想设计路径节点优化算法,删除冗余节点,减少转折,提高路径平滑度。基于全局最优设计DWA算法的动态窗口评价函数,用于区分已知障碍物和未知动态、静态障碍物,提取改进A*算法规划路径的关键点作为DWA算法的临时目标点,在全局最优的基础上实现了改进A*与DWA算法融合。实验结果表明,在复杂环境中,融合算法规划路径既能保证全局最优,又能及时有效地躲避环境中出现的动静态障碍物,实现复杂环境中的动态路径规划。  相似文献   

15.
快速搜索随机树(Rapidly-exploring random Tree Star,RRT*)算法在移动机器人实际应用中规划路径在转向部分存在较多的冗余转折点,导致移动机器人在移动转向过程中出现多次停顿与转向,为剔除规划路径中的冗余路径点,提高机器人移动流畅性,提出一种改进的 RRT*算法。算法将局部逆序试连法引入移动机器人路径规划,在确保RRT*算法概率完备性和渐进最优性的前提下,剔除规划路径中的冗余路径节点,使最终路径更加接近最短路径。通过MATLAB仿真实验证明,规划路径平均长度缩短4%,算法耗时缩短35%,改进后的RRT*算法能缩短规划路径且转向部分路径更加平滑。最后,使用改进后的RRT*算法在室内环境下进行移动机器人路径规划实验。实验结果表明:规划路径上无冗余路径点,且移动机器人沿路径移动流畅。  相似文献   

16.
针对移动机器人在复杂环境下(包含静态和动态环境)的路径规划效率低的问题,提出了一种改进的A*算法与动态窗口法相结合的混合算法。针对传统A*算法安全性不足的问题,采用障碍规避策略,优化节点的选择方式,增加路径的安全性;针对转折点多的问题,采用递归二分法优化策略,去除冗余节点,减少转弯次数;针对静态环境下路径平滑性不足的问题,采用动态内切圆平滑策略将折线角优化成弧度角,以增加路径的平滑性。对于传统动态窗口法的目标点附近存在障碍物时规划效果不好和容易在凹型槽类障碍物中陷入局部最优的问题,在原有的评价函数中引入了距离偏差和轨迹偏差。最后,对所提的改进A*算法和混合算法分别在静态和动态环境下与其他算法进行仿真比较。从结果可以看出,与传统混合算法相比,临时障碍环境下,路径长度和运行时间分别缩短了13.2%和65.8%;移动障碍环境下,路径长度和运行时间分别缩短了13.9%和44.9%,所提的算法提高了在复杂环境中规划路径的效率。  相似文献   

17.
王洪斌  尹鹏衡  郑维  王红  左佳铄 《机器人》2020,42(3):346-353
提出了一种改进的A*算法与动态窗口法相结合的混合算法,以解决移动机器人在多目标复杂环境中的路径规划问题.首要,为了提升算法的运行效率,实现单次规划的路径可通过多个目标点,同时提升路径平滑处理的灵活性并满足移动机器人非完整约束条件,本文利用目标成本函数对所有目标进行优先级判定,进而利用改进的A*算法规划一条经过多个目标点的最优路径,同时采用自适应圆弧优化算法与加权障碍物步长调节算法,有效地将路径长度缩短5%,转折角总度数降低26.62%.其次,为实现移动机器人在动态复杂环境中局部避障并追击动态目标点.提出将改进动态窗口算法与全局路径规划信息相结合的在线路径规划法,采用预瞄偏差角追踪法成功捕捉移动目标点,并提升了路径规划效率.最后,对所提方法进行仿真实验,结果表明该方法能够在复杂动态环境中更有效地实现路径规划.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号