首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several applications in shape modeling and exploration require identification and extraction of a 3D shape part matching a 2D sketch. We present CustomCut, an on‐demand part extraction algorithm. Given a sketched query, CustomCut automatically retrieves partially matching shapes from a database, identifies the region optimally matching the query in each shape, and extracts this region to produce a customized part that can be used in various modeling applications. In contrast to earlier work on sketch‐based retrieval of predefined parts, our approach can extract arbitrary parts from input shapes and does not rely on a prior segmentation into semantic components. The method is based on a novel data structure for fast retrieval of partial matches: the randomized compound k‐NN graph built on multi‐view shape projections. We also employ a coarse‐to‐fine strategy to progressively refine part boundaries down to the level of individual faces. Experimental results indicate that our approach provides an intuitive and easy means to extract customized parts from a shape database, and significantly expands the design space for the user. We demonstrate several applications of our method to shape design and exploration.  相似文献   

2.
We discuss spatial selection techniques for three‐dimensional datasets. Such 3D spatial selection is fundamental to exploratory data analysis. While 2D selection is efficient for datasets with explicit shapes and structures, it is less efficient for data without such properties. We first propose a new taxonomy of 3D selection techniques, focusing on the amount of control the user has to define the selection volume. We then describe the 3D spatial selection technique Tangible Brush, which gives manual control over the final selection volume. It combines 2D touch with 6‐DOF 3D tangible input to allow users to perform 3D selections in volumetric data. We use touch input to draw a 2D lasso, extruding it to a 3D selection volume based on the motion of a tangible, spatially‐aware tablet. We describe our approach and present its quantitative and qualitative comparison to state‐of‐the‐art structure‐dependent selection. Our results show that, in addition to being dataset‐independent, Tangible Brush is more accurate than existing dataset‐dependent techniques, thus providing a trade‐off between precision and effort.  相似文献   

3.
4.
5.
As many different 3D volumes could produce the same 2D x‐ray image, inverting this process is challenging. We show that recent deep learning‐based convolutional neural networks can solve this task. As the main challenge in learning is the sheer amount of data created when extending the 2D image into a 3D volume, we suggest firstly to learn a coarse, fixed‐resolution volume which is then fused in a second step with the input x‐ray into a high‐resolution volume. To train and validate our approach we introduce a new dataset that comprises of close to half a million computer‐simulated 2D x‐ray images of 3D volumes scanned from 175 mammalian species. Future applications of our approach include stereoscopic rendering of legacy x‐ray images, re‐rendering of x‐rays including changes of illumination, view pose or geometry. Our evaluation includes comparison to previous tomography work, previous learning methods using our data, a user study and application to a set of real x‐rays.  相似文献   

6.
This paper presents a method that generates natural and intuitive deformations via direct manipulation and smooth interpolation for multi‐element 2D shapes. Observing that the structural relationships between different parts of a multi‐element 2D shape are important for capturing its feature semantics, we introduce a simple structure called a feature frame to represent such relationships. A constrained optimization is solved for shape manipulation to find optimal deformed shapes under user‐specified handle constraints. Based on the feature frame, local feature preservation and structural relationship maintenance are directly encoded into the objective function. Beyond deforming a given multi‐element 2D shape into a new one at each key frame, our method can automatically generate a sequence of natural intermediate deformations by interpolating the shapes between the key frames. The method is computationally efficient, allowing real‐time manipulation and interpolation, as well as generating natural and visually plausible results.  相似文献   

7.
Dissection puzzles require assembling a common set of pieces into multiple distinct forms. Existing works focus on creating 2D dissection puzzles that form primitive or naturalistic shapes. Unlike 2D dissection puzzles that could be supported on a tabletop surface, 3D dissection puzzles are preferable to be steady by themselves for each assembly form. In this work, we aim at computationally designing steady 3D dissection puzzles. We address this challenging problem with three key contributions. First, we take two voxelized shapes as inputs and dissect them into a common set of puzzle pieces, during which we allow slightly modifying the input shapes, preferably on their internal volume, to preserve the external appearance. Second, we formulate a formal model of generalized interlocking for connecting pieces into a steady assembly using both their geometric arrangements and friction. Third, we modify the geometry of each dissected puzzle piece based on the formal model such that each assembly form is steady accordingly. We demonstrate the effectiveness of our approach on a wide variety of shapes, compare it with the state‐of‐the‐art on 2D and 3D examples, and fabricate some of our designed puzzles to validate their steadiness.  相似文献   

8.
In this paper we describe a system that is able to acquire models of 2D shapes from cluttered scenes. The input of the system is a sequence of images, each of which shows an unknown number of overlapping unknown 2D objects. The system identifies matching partial shapes across different images and combines them into complete 2D shape models, thus giving a complete interpretation of the input scenes. The identification of partial shapes is based on string matching, whereas a graph search procedure is used for shape model generation. The system has been fully implemented and tested on images containing parts of a jigsaw puzzle. Received: 20 November 1998?Received in revised form: 24 December 1998?Accepted: 4 January 1999  相似文献   

9.
Recent advances in modeling tools enable non‐expert users to synthesize novel shapes by assembling parts extracted from model databases. A major challenge for these tools is to provide users with relevant parts, which is especially difficult for large repositories with significant geometric variations. In this paper we analyze unorganized collections of 3D models to facilitate explorative shape synthesis by providing high‐level feedback of possible synthesizable shapes. By jointly analyzing arrangements and shapes of parts across models, we hierarchically embed the models into low‐dimensional spaces. The user can then use the parameterization to explore the existing models by clicking in different areas or by selecting groups to zoom on specific shape clusters. More importantly, any point in the embedded space can be lifted to an arrangement of parts to provide an abstracted view of possible shape variations. The abstraction can further be realized by appropriately deforming parts from neighboring models to produce synthesized geometry. Our experiments show that users can rapidly generate plausible and diverse shapes using our system, which also performs favorably with respect to previous modeling tools.  相似文献   

10.
Symmetry is a common characteristic in natural and man‐made objects. Its ubiquitous nature can be exploited to facilitate the analysis and processing of computational representations of real objects. In particular, in computer graphics, the detection of symmetries in 3D geometry has enabled a number of applications in modeling and reconstruction. However, the problem of symmetry detection in incomplete geometry remains a challenging task. In this paper, we propose a vote‐based approach to detect symmetry in 3D shapes, with special interest in models with large missing parts. Our algorithm generates a set of candidate symmetries by matching local maxima of a surface function based on the heat diffusion in local domains, which guarantee robustness to missing data. In order to deal with local perturbations, we propose a multi‐scale surface function that is useful to select a set of distinctive points over which the approximate symmetries are defined. In addition, we introduce a vote‐based scheme that is aware of the partiality, and therefore reduces the number of false positive votes for the candidate symmetries. We show the effectiveness of our method in a varied set of 3D shapes and different levels of partiality. Furthermore, we show the applicability of our algorithm in the repair and completion of challenging reassembled objects in the context of cultural heritage.  相似文献   

11.
Modeling 3D objects on existing software usually requires a heavy amount of interactions, especially for users who lack basic knowledge of 3D geometry. Sketch‐based modeling is a solution to ease the modelling procedure and thus has been researched for decades. However, modelling a man‐made shape with complex structures remains challenging. Existing methods adopt advanced deep learning techniques to map holistic sketches to 3D shapes. They are still bottlenecked to deal with complicated topologies. In this paper, we decouple the task of sketch2shape into a part generation module and a part assembling module, where deep learning methods are leveraged for the implementation of both modules. By changing the focus from holistic shapes to individual parts, it eases the learning process of the shape generator and guarantees high‐quality outputs. With the learned automated part assembler, users only need a little manual tuning to obtain a desired layout. Extensive experiments and user studies demonstrate the usefulness of our proposed system.  相似文献   

12.
A recent trend in interactive modeling of 3D shapes from a single image is designing minimal interfaces, and accompanying algorithms, for modeling a specific class of objects. Expanding upon the range of shapes that existing minimal interfaces can model, we present an interactive image‐guided tool for modeling shapes made up of extruded parts. An extruded part is represented by extruding a closed planar curve, called base, in the direction orthogonal to the base. To model each extruded part, the user only needs to sketch the projected base shape in the image. The main technical contribution is a novel optimization‐based approach for recovering the 3D normal of the base of an extruded object by exploring both geometric regularity of the sketched curve and image contents. We developed a convenient interface for modeling multi‐part shapes and a method for optimizing the relative placement of the parts. Our tool is validated using synthetic data and tested on real‐world images.  相似文献   

13.
Paper pop‐ups are interesting three‐dimensional books that fascinate people of all ages. The design and construction of these pop‐up books however are done manually and require a lot of time and effort. This has led to computer‐assisted or automated tools for designing paper pop‐ups. This paper proposes an approach for automatically converting a 3D model into a multi‐style paper pop‐up. Previous automated approaches have only focused on single‐style pop‐ups, where each is made of a single type of pop‐up mechanisms. In our work, we combine multiple styles in a pop‐up, which is more representative of actual artist's creations. Our method abstracts a 3D model using suitable primitive shapes that both facilitate the formation of the considered pop‐up mechanisms and closely approximate the input model. Each shape is then abstracted using a set of 2D patches that combine to form a valid pop‐up. We define geometric conditions that ensure the validity of the combined pop‐up structures. In addition, our method also employs an image‐based approach for producing the patches to preserve the textures, finer details and important contours of the input model. Finally, our system produces a printable design layout and decides an assembly order for the construction instructions. The feasibility of our results is verified by constructing the actual paper pop‐ups from the designs generated by our system.  相似文献   

14.
This paper presents an online personalised non‐photorealistic rendering (NPR) technique for 3D models generated from interactively sketched input. This technique has been integrated into a sketch‐based modelling system. It lets users interact with computers by drawing naturally, without specifying the number, order, or direction of strokes. After sketches are interpreted as 3D objects, they can be rendered with personalised drawing styles so that the reconstructed 3D model can be presented in a sketchy style similar in appearance to what have been drawn for the 3D model. This technique captures the user's drawing style without using template or prior knowledge of the sketching style. The personalised rendering style can be applied to both visible and initially invisible geometry. The rendering strokes are intelligently selected from the input sketches and mapped to edges of the 3D object. In addition, non‐geometric information such as surface textures can be added to the recognised object in different sketching modes. This will integrate sketch‐based incremental 3D modelling and NPR into conceptual design.  相似文献   

15.
目的 为建立3维模型语义部件之间的对应关系并实现模型自动分割,提出一种利用隐式解码器(implicit decoder,IM-decoder)的无监督3维模型簇协同分割网络。方法 首先对3维点云模型进行体素化操作,进而由CNN-encoder (convolutional neural network encoder)提取体素化点云模型的特征,并将模型信息映射至特征空间。然后使用注意力模块聚合3维模型相邻点特征,将聚合特征与3维点坐标作为IM-decoder的输入来增强模型的空间感知能力,并输出采样点相对于模型部件的内外状态。最后使用max pooling聚合解码器生成的隐式场,以得到模型的协同分割结果。结果 实验结果表明,本文算法在ShapeNet Part数据集上的mIoU (mean intersection-over-union)为62.1%,与目前已知的两类无监督3维点云模型分割方法相比,分别提高了22.5%和18.9%,分割性能得到了极大提升。与两种有监督方法相比,分别降低了19.3%和20.2%,但其在部件数较少的模型上可获得更优的分割效果。相比于使用交叉熵函数作为重构损失函数,本文使用均方差函数可获得更高的分割准确率,mIoU提高了26.3%。结论 与当前主流的无监督分割算法相比,本文利用隐式解码器进行3维模型簇协同分割的无监督方法分割准确率更高。  相似文献   

16.
We present a novel sketch‐based tool, called iCutter (short for intelligent cutter), for cutting out semantic parts of 3D shapes. When a user performs a cutting task, he only needs to draw a freehand stroke to roughly specify where cuts should be made without much attention. Then, iCutter intelligently returns the best cut that meets the user's intention and expectation. We develop a novel scheme for selecting the optimal isoline from a well‐designed scalar field induced from the input stroke, which respects the part saliency as well as the input stroke. We demonstrate various examples to illustrate the flexibility and applicability of our iCutter tool. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
We present a pressure‐augmented tactile 3D data navigation technique, specifically designed for small devices, motivated by the need to support the interactive visualization beyond traditional workstations. While touch input has been studied extensively on large screens, current techniques do not scale to small and portable devices. We use phone‐based pressure sensing with a binary mapping to separate interaction degrees of freedom (DOF) and thus allow users to easily select different manipulation schemes (e. g., users first perform only rotation and then with a simple pressure input to switch to translation). We compare our technique to traditional 3D‐RST (rotation, scaling, translation) using a docking task in a controlled experiment. The results show that our technique increases the accuracy of interaction, with limited impact on speed. We discuss the implications for 3D interaction design and verify that our results extend to older devices with pseudo pressure and are valid in realistic phone usage scenarios.  相似文献   

18.
We propose an optimization framework for 3D printing that seeks to save printing time and the support material required to print 3D shapes. Three‐dimensional printing technology is rapidly maturing and may revolutionize how we manufacture objects. The total cost of printing, however, is governed by numerous factors which include not only the price of the printer but also the amount of material and time to fabricate the shape. Our PackMerger framework converts the input 3D watertight mesh into a shell by hollowing its inner parts. The shell is then divided into segments. The location of splits is controlled based on several parameters, including the size of the connection areas or volume of each segment. The pieces are then tightly packed using optimization. The optimization attempts to minimize the amount of support material and the bounding box volume of the packed segments while keeping the number of segments minimal. The final packed configuration can be printed with substantial time and material savings, while also allowing printing of objects that would not fit into the printer volume. We have tested our system on three different printers and it shows a reduction of 5–30% of the printing time while simultaneously saving 15–65% of the support material. The optimization time was approximately 1 min. Once the segments are printed, they need to be assembled.  相似文献   

19.
可控的三维Morphing   总被引:4,自引:0,他引:4  
方向  鲍虎军  彭群生 《软件学报》2001,12(6):856-863
提出了一种基于距离场插值的三维Morphing算法.该方法通过解析距离场来实现三维Morphing,使过渡形体的光滑性不依赖于原模型的离散剖分精度.同时,给出了基于约束点对和变形控制体的交互形状过渡算法,用户可由此直观而方便地对变形过程实施有效的控制.多个变形实例证明,该算法能够方便地实现两个任意定向流形模型间的可控三维Morphing.  相似文献   

20.
We present a 3‐D correspondence method to match the geometric extremities of two shapes which are partially isometric. We consider the most general setting of the isometric partial shape correspondence problem, in which shapes to be matched may have multiple common parts at arbitrary scales as well as parts that are not similar. Our rank‐and‐vote‐and‐combine algorithm identifies and ranks potentially correct matches by exploring the space of all possible partial maps between coarsely sampled extremities. The qualified top‐ranked matchings are then subjected to a more detailed analysis at a denser resolution and assigned with confidence values that accumulate into a vote matrix. A minimum weight perfect matching algorithm is finally iterated to combine the accumulated votes into an optimal (partial) mapping between shape extremities, which can further be extended to a denser map. We test the performance of our method on several data sets and benchmarks in comparison with state of the art.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号