首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In this research, a data clustering algorithm named as non-dominated sorting genetic algorithm-fuzzy membership chromosome (NSGA-FMC) based on K-modes method which combines fuzzy genetic algorithm and multi-objective optimization was proposed to improve the clustering quality on categorical data. The proposed method uses fuzzy membership value as chromosome. In addition, due to this innovative chromosome setting, a more efficient solution selection technique which selects a solution from non-dominated Pareto front based on the largest fuzzy membership is integrated in the proposed algorithm. The multiple objective functions: fuzzy compactness within a cluster (π) and separation among clusters (sep) are used to optimize the clustering quality. A series of experiments by using three UCI categorical datasets were conducted to compare the clustering results of the proposed NSGA-FMC with two existing methods: genetic algorithm fuzzy K-modes (GA-FKM) and multi-objective genetic algorithm-based fuzzy clustering of categorical attributes (MOGA (π, sep)). Adjusted Rand index (ARI), π, sep, and computation time were used as performance indexes for comparison. The experimental result showed that the proposed method can obtain better clustering quality in terms of ARI, π, and sep simultaneously with shorter computation time.  相似文献   

2.
In this paper, a novel multi-objective location model within multi-server queuing framework is proposed, in which facilities behave as M/M/m queues. In the developed model of the problem, the constraints of selecting the nearest-facility along with the service level restriction are considered to bring the model closer to reality. Three objective functions are also considered including minimizing (I) sum of the aggregate travel and waiting times, (II) maximum idle time of all facilities, and (III) the budget required to cover the costs of establishing the selected facilities plus server staffing costs. Since the developed model of the problem is of an NP-hard type and inexact solutions are more probable to be obtained, soft computing techniques, specifically evolutionary computations, are generally used to cope with the lack of precision. From different terms of evolutionary computations, this paper proposes a Pareto-based meta-heuristic algorithm called multi-objective harmony search (MOHS) to solve the problem. To validate the results obtained, two popular algorithms including non-dominated sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA) are utilized as well. In order to demonstrate the proposed methodology and to compare the performances in terms of Pareto-based solution measures, the Taguchi approach is first utilized to tune the parameters of the proposed algorithms, where a new response metric named multi-objective coefficient of variation (MOCV) is introduced. Then, the results of implementing the algorithms on some test problems show that the proposed MOHS outperforms the other two algorithms in terms of computational time.  相似文献   

3.
In this paper, a bi-objective multi-products economic production quantity (EPQ) model is developed, in which the number of orders is limited and imperfect items that are re-workable are produced. The objectives of the problem are minimization of the total inventory costs as well as minimizing the required warehouse space. The model is shown to be of a bi-objective nonlinear programming type, and in order to solve it two meta-heuristic algorithms namely, the non-dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization (MOPSO) algorithm, are proposed. To verify the solution obtained and to evaluate the performance of proposed algorithms, two-sample t-tests are employed to compare the means of the first objective value, the means of the second objective values, and the mean required CPU time of solving the problem using two algorithms. The results show while both algorithms are efficient to solve the model and the solution qualities of the two algorithms do not differ significantly, the computational CPU time of MOPSO is considerably lower than that of NSGA-II.  相似文献   

4.
In this study, an integrated multi-objective production-distribution flow-shop scheduling problem will be taken into consideration with respect to two objective functions. The first objective function aims to minimize total weighted tardiness and make-span and the second objective function aims to minimize the summation of total weighted earliness, total weighted number of tardy jobs, inventory costs and total delivery costs. Firstly, a mathematical model is proposed for this problem. After that, two new meta-heuristic algorithms are developed in order to solve the problem. The first algorithm (HCMOPSO), is a multi-objective particle swarm optimization combined with a heuristic mutation operator, Gaussian membership function and a chaotic sequence and the second algorithm (HBNSGA-II), is a non-dominated sorting genetic algorithm II with a heuristic criterion for generation of initial population and a heuristic crossover operator. The proposed HCMOPSO and HBNSGA-II are tested and compared with a Non-dominated Sorting Genetic Algorithm II (NSGA-II), a Multi-Objective Particle Swarm Optimization (MOPSO) and two state-of-the-art algorithms from recent researches, by means of several comparing criteria. The computational experiments demonstrate the outperformance of the proposed HCMOPSO and HBNSGA-II.  相似文献   

5.
In this research, a bi-objective vendor managed inventory model in a supply chain with one vendor (producer) and several retailers is developed, in which determination of the optimal numbers of different machines that work in series to produce a single item is considered. While the demand rates of the retailers are deterministic and known, the constraints are the total budget, required storage space, vendor's total replenishment frequencies, and average inventory. In addition to production and holding costs of the vendor along with the ordering and holding costs of the retailers, the transportation cost of delivering the item to the retailers is also considered in the total chain cost. The aim is to find the order size, the replenishment frequency of the retailers, the optimal traveling tour from the vendor to retailers, and the number of machines so as the total chain cost is minimized while the system reliability of producing the item is maximized. Since the developed model of the problem is NP-hard, the multi-objective meta-heuristic optimization algorithm of non-dominated sorting genetic algorithm-II (NSGA-II) is proposed to solve the problem. Besides, since no benchmark is available in the literature to verify and validate the results obtained, a non-dominated ranking genetic algorithm (NRGA) is suggested to solve the problem as well. The parameters of both algorithms are first calibrated using the Taguchi approach. Then, the performances of the two algorithms are compared in terms of some multi-objective performance measures. Moreover, a local searcher, named simulated annealing (SA), is used to improve NSGA-II. For further validation, the Pareto fronts are compared to lower and upper bounds obtained using a genetic algorithm employed to solve two single-objective problems separately.  相似文献   

6.
Wu  Dongmei  Pun  Chi-Man  Xu  Bin  Gao  Hao  Wu  Zhenghua 《Multimedia Tools and Applications》2020,79(21-22):14319-14339

In this paper, a multi-objective bird swarm algorithm (MOBSA) is proposed to cope with multi-objective optimization problems. The algorithm is explored based on BSA which is an evolutionary algorithm suitable for single objective optimization. In this paper, non-dominated sorting approach is used to distinguish optimal solutions and parallel coordinates is applied to evaluate the distribution density of non-dominated solution and further update the external archive when it is full to overflowing, which ensure faster convergence and more widespread of Pareto front. Then, the MOBSA is adopted to optimize benchmark problems. The results demonstrate that MOBSA gets better performance compared with NSGA-II and MOPSO. Since a vehicle power train problem could be treated as a typical multi-objective optimization problem with constraints, with integration of constrained non-dominated solution, MOBSA is adopted to acquire optimal gear ratios and optimize vehicle power train. The results compared with other popular algorithm prove the proposed algorithm is more suitable for constrained multi-objective optimization problem in engineering field.

  相似文献   

7.
利用多目标法处理约束条件,提出一种改进的基于多目标优化的遗传算法用于求解约束优化问题。该算法将约束优化问题转化为两个目标的多目标优化问题; 利用庄家法构造非劣个体,将种群分为支配子种群和非支配子种群,以一定概率分别从支配子种群和非支配子种群中选择个体进行算术交叉操作,引导个体逐步向极值点靠近,增强算法的局部搜索能力,对非支配子种群进行多样性变异操作。8个标准测试函数和3个工程应用的仿真实验结果表明了该算法的有效性。  相似文献   

8.
基于改进混沌优化的多目标遗传算法   总被引:8,自引:0,他引:8  
王瑞琪  张承慧  李珂 《控制与决策》2011,26(9):1391-1397
针对多目标遗传算法存在的缺陷,提出了基于改进混沌优化的多目标遗传算法.引入基于改Tent映射的自适应变尺度混沌优化方法细化搜索空间和高效寻优,结合非支配排序的群体分级机制和精英保留等多目标优化策略,保持种群多样性的同时保证了进化向Pareto优解集的方向进行.多目标测试函数的数值仿真和电力系统无功优化的算例分析表明了该算法的有效性和可行性.  相似文献   

9.
In this paper, we proposed a multi-objective Pareto based particle swarm optimization (MOPPSO) to minimize the architectural complexity and maximize the classification accuracy of a polynomial neural network (PNN). To support this, we provide an extensive review of the literature on multi-objective particle swarm optimization and PNN. Classification using PNN can be considered as a multi-objective problem rather than as a single objective one. Measures like classification accuracy and architectural complexity used for evaluating PNN based classification can be thought of as two different conflicting criterions. Using these two metrics as the criteria of classification problem, the proposed MOPPSO technique attempts to find out a set of non-dominated solutions with less complex PNN architecture and high classification accuracy. An extensive experimental study has been carried out to compare the importance and effectiveness of the proposed method with the chosen state-of-the-art multi-objective particle swarm optimization (MOPSO) algorithm using several benchmark datasets. A comprehensive bibliography is included for further enhancement of this area.  相似文献   

10.
To solve many-objective optimization problems (MaOPs) by evolutionary algorithms (EAs), the maintenance of convergence and diversity is essential and difficult. Improved multi-objective optimization evolutionary algorithms (MOEAs), usually based on the genetic algorithm (GA), have been applied to MaOPs, which use the crossover and mutation operators of GAs to generate new solutions. In this paper, a new approach, based on decomposition and the MOEA/D framework, is proposed: model and clustering based estimation of distribution algorithm (MCEDA). MOEA/D means the multi-objective evolutionary algorithm based on decomposition. The proposed MCEDA is a new estimation of distribution algorithm (EDA) framework, which is intended to extend the application of estimation of distribution algorithm to MaOPs. MCEDA was implemented by two similar algorithm, MCEDA/B (based on bits model) and MCEDA/RM (based on regular model) to deal with MaOPs. In MCEDA, the problem is decomposed into several subproblems. For each subproblem, clustering algorithm is applied to divide the population into several subgroups. On each subgroup, an estimation model is created to generate the new population. In this work, two kinds of models are adopted, the new proposed bits model and the regular model used in RM-MEDA (a regularity model based multi-objective estimation of distribution algorithm). The non-dominated selection operator is applied to improve convergence. The proposed algorithms have been tested on the benchmark test suite for evolutionary algorithms (DTLZ). The comparison with several state-of-the-art algorithms indicates that the proposed MCEDA is a competitive and promising approach.  相似文献   

11.
This paper presents comparisons of some recent improving strategies on multi-objective particle swarm optimization (MOPSO) algorithm which is based on Pareto dominance for handling multiple objective in continuous review stochastic inventory control system. The complexity of considering conflict objectives such as cost minimization and service level maximization in the real-world inventory control problem needs to employ more exact optimizers generating more diverse and better non-dominated solutions of a reorder point and order size system. At first, we apply the original MOPSO employed for the multi-objective inventory control problem. Then we incorporate the mutation operator to maintain diversity in the swarm and explore all the search space into the MOPSO. Next we change the leader selection strategy used that called geographically-based system (Grids) and instead of that, crowding distance factor is also applied to select the global optimal particle as a leader. Also we use ε-dominance concept to bound archive size and maintain more diversity and convergence in the MOPSO for optimizing the inventory control problem. Finally, the MOPSO algorithms created using these strategies are evaluated and compared with each other in terms of some performance metrics taken from the literature. The results indicate that these strategies have significant influences on computational time, convergence, and diversity of generated Pareto optimal solutions.  相似文献   

12.
Nowadays in competitive markets, production organizations are looking to increase their efficiency and optimize manufacturing operations. In addition, batch processor machines (BPMs) are faster and cheaper to carry out operations; thus the performance of manufacturing systems is increased. This paper studies a production scheduling problem on unrelated parallel BPMs with considering the release time and ready time for jobs as well as batch capacity constraints. In unrelated parallel BPMs, modern machines are used in a production line side by side with older machines that have different purchasing costs; so this factor is introduced as a novel objective to calculate the optimum cost for purchasing various machines due to the budget. Thus, a new bi-objective mathematical model is presented to minimize the makespan (i.e., Cmax), tardiness/earliness penalties and the purchasing cost of machines simultaneously. The presented model is first coded and solved by the ε-constraint‌ method. Because of the complexity of the NP-hard problem, exact methods are not able to optimally solve large-sized problems in a reasonable time. Therefore, we propose a multi-objective harmony search (MOHS) algorithm. the results are compared with the multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm (NSGA-II), and multi-objective ant colony optimization algorithm (MOACO). To tune their parameters, the Taguchi method is used. The results are compared by five metrics that show the effectiveness of the proposed MOHS algorithm compared with the MOPSO, NSGA-II and MOACO. At last, the sensitivity of the model is analyzed on new parameters and impacts of each parameter are illustrated on bi- objective functions.  相似文献   

13.
鉴于电力需求的日益增长与传统无功优化方法的桎梏,如何更加合理有效地解决电力系统的无功优化问题逐渐成为了研究的热点。提出一种多目标飞蛾扑火算法来解决电力系统多目标无功优化的问题,算法引入固定大小的外部储存机制、自适应的网格和筛选机制来有效存储和提升无功优化问题的帕累托最优解集,算法采用CEC2009标准多目标测试函数来进行仿真实验,并与两种经典算法进行性能的对比分析。此外,在电力系统IEEE 30节点上将该算法与MOPSO,NGSGA-II算法的求解结果进行比较分析的结果表明,多目标飞蛾算法具有良好的性能,并在解决电力系统多目标无功优化问题上具有良好的潜力。  相似文献   

14.
This paper presents a bi-objective mathematical programming model for the restricted facility location problem, under a congestion and pricing policy. Motivated by various applications such as locating server on internet mirror sites and communication networks, this research investigates congested systems with immobile servers and stochastic demand as M/M/m/k queues. For this problem, we consider two simultaneous perspectives; (1) customers who desire to limit waiting time for service and (2) service providers who intend to increase profits. We formulate a bi-objective facility location problem with two objective functions: (i) maximizing total profit of the whole system and (ii) minimizing the sum of waiting time in queues; the model type is mixed-integer nonlinear. Then, a multi-objective optimization algorithm based on vibration theory (so-called multi-objective vibration damping optimization (MOVDO)), is developed to solve the model. Moreover, the Taguchi method is also implemented, using a response metric to tune the parameters. The results are analyzed and compared with a non-dominated sorting genetic algorithm (NSGA-II) as a well-developed multi-objective evolutionary optimization algorithm. Computational results demonstrate the efficiency of the proposed MOVDO to solve large-scale problems.  相似文献   

15.
提出一种基于膜优化理论的多目标优化算法,该算法受膜计算的启发,结合膜结构、多重集和反应规则来求解多目标优化问题。为了增强算法的适应能力,采用了遗传算法中的交叉与变异机制,同时在膜中引入外部档案集,并采用非支配排序和拥挤距离方法对外部档案集进行更新操作来提高搜索解的多样性。仿真实验采用标准的KUR和ZDT系列多目标问题对所提出的算法进行测试,通过该算法得出的非支配解集能够较好地逼近真实的Pareto前沿,说明所提算法在求解多目标优化问题上具有可行性和有效性。  相似文献   

16.
Determination of optimal cutting parameters is one of the most important elements in any process planning of metal parts. This paper presents a multi-objective optimization technique, based on genetic algorithms, to optimize the cutting parameters in turning processes: cutting depth, feed and speed. Two conflicting objectives, tool life and operation time, are simultaneously optimized. The proposed model uses a microgenetic algorithm in order to obtain the non-dominated points and build the Pareto front graph. An application sample is developed and its results are analysed for several different production conditions. This paper also remarks the advantages of multi-objective optimization approach over the single-objective one.  相似文献   

17.
Evolutionary multi-objective optimization (EMO) algorithms have been used in various real-world applications. However, most of the Pareto domination based multi-objective optimization evolutionary algorithms are not suitable for many-objective optimization. Recently, EMO algorithm incorporated decision maker’s preferences became a new trend for solving many-objective problems and showed a good performance. In this paper, we first use a new selection scheme and an adaptive rank based clone scheme to exploit the dynamic information of the online antibody population. Moreover, a special differential evolution (DE) scheme is combined with directional information by selecting parents for the DE calculation according to the ranks of individuals within a population. So the dominated solutions can learn the information of the non-dominated ones by using directional information. The proposed method has been extensively compared with two-archive algorithm, light beam search non-dominated sorting genetic algorithm II and preference rank immune memory clone selection algorithm over several benchmark multi-objective optimization problems with from two to ten objectives. The experimental results indicate that the proposed algorithm achieves competitive results.  相似文献   

18.
In this work, a novel surrogate-assisted memetic algorithm is proposed which is based on the preservation of genetic diversity within the population. The aim of the algorithm is to solve multi-objective optimization problems featuring computationally expensive fitness functions in an efficient manner. The main novelty is the use of an evolutionary algorithm as global searcher that treats the genetic diversity as an objective during the evolution and uses it, together with a non-dominated sorting approach, to assign the ranks. This algorithm, coupled with a gradient-based algorithm as local searcher and a back-propagation neural network as global surrogate model, demonstrates to provide a reliable and effective balance between exploration and exploitation. A detailed performance analysis has been conducted on five commonly used multi-objective problems, each one involving distinct features that can make the convergence difficult toward the Pareto-optimal front. In most cases, the proposed algorithm outperformed the other state-of-the-art evolutionary algorithms considered in the comparison, assuring higher repeatability on the final non-dominated set, deeper convergence level and higher convergence rate. It also demonstrates a clear ability to widely cover the Pareto-optimal front with larger percentage of non-dominated solutions if compared to the total number of function evaluations.  相似文献   

19.
In this paper, evolutionary algorithms (EAs) are deployed for multi-objective Pareto optimal design of group method of data handling (GMDH)-type neural networks which have been used for modelling an explosive cutting process using some input–output experimental data. In this way, multi-objective EAs (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity-preserving mechanism are used for Pareto optimization of such GMDH-type neural networks. The important conflicting objectives of GMDH-type neural networks that are considered in this work are, namely, training error (TE), prediction error (PE), and number of neurons (N) of such neural networks. Different pairs of theses objective functions are selected for 2-objective optimization processes. Therefore, optimal Pareto fronts of such models are obtained in each case which exhibit the trade-off between the corresponding pair of conflicting objectives and, thus, provide different non-dominated optimal choices of GMDH-type neural networks models for explosive cutting process. Moreover, all the three objectives are considered in a 3-objective optimization process, which consequently leads to some more non-dominated choices of GMDH-type models representing the trade-offs among the training error, prediction error, and number of neurons (complexity of network), simultaneously. The overlay graphs of these Pareto fronts also reveal that the 3-objective results include those of the 2-objective results and, thus, provide more optimal choices for the multi-objective design of GMDH-type neural networks in terms of minimum training error, minimum prediction error, and minimum complexity.  相似文献   

20.
《自动化博览》2011,(Z2):145-150
In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号