首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
本文针对两轮自平衡可移动机器人, 提出了一种新的能耗最优运动轨迹规划方法.本文将轨迹规划与由轨迹跟踪控制器和机器人动力学方程组成的运动控制模型相结合, 基于期望轨迹与实际电机输入电压间的传递函数和能量在时域和频域上的对应关系, 通过频域分析的方法得到了具有明确机理表达的线性能耗模型, 并采用最小二乘线性回归法对模型参数进行辨识.对于能耗最优轨迹, 由全局路径规划得到的路径点作为局部轨迹规划的局部目标点, 通过一定的数学转换和参数求导, 可直接得到相邻两个局部目标点间的能耗最优运行轨迹和对应的运行时间.通过仿真实验证明了本文所提能耗模型的准确性和所得轨迹的能耗最优性.  相似文献   

2.
本文研究柔性机械臂的轨迹跟踪和振动抑制问题. 首先, 利用Lagrange法和假设模态法建立柔性机械臂的动态模型, 进而利用奇异摄动理论得到柔性机械臂的双时间尺度模型. 然后, 基于慢时间尺度模型利用滑模控制理论设计轨迹跟踪控制器; 借助于快时间尺度模型利用自适应动态规划设计参数不精确已知情况下的最优振动抑制控制器; 将二者相结合, 构造双时间尺度组合控制器, 利用奇异摄动理论证明闭环系统稳定. 最后, 在Matlab/Simulink环境下进行实验, 与现有方法相比, 本文设计的控制器对柔性振动具有更好的振动抑制效果, 跟踪精度更高.  相似文献   

3.
加速度约束条件下的非完整移动机器人运动控制   总被引:4,自引:0,他引:4  
曹洋  方帅  徐心和 《控制与决策》2006,21(2):193-0196
将移动机器人的运动规划与跟踪控制问题合并在一起,对加速度约束条件下的非完整移动机器人运动控制问题进行研究,提出基于贝塞尔曲线的路径规划方法,以满足机器人的非完整约束.在考虑所受加速度约束的条件下,通过规划机器人状态时问轨线的方法实现了时间最优的轨迹规划.基于控制李亚普诺夫函数推导出了轨迹跟踪的控制律.仿真实验结果表明所提出的算法是有效的.  相似文献   

4.
基于四阶贝塞尔曲线的无人车可行轨迹规划   总被引:1,自引:0,他引:1  
对于实际的无人车系统来说,轨迹规划需要保证其规划出来的轨迹满足运动学约束、 侧滑约束以及执行机构约束.为了生成满足无人车初始状态约束、目标状态约束的局部可行轨迹,本文提出了一种基于四阶贝塞尔曲线的轨迹规划方法.在该方法中, 轨迹规划问题首先被分解为轨形规划及速度规划两个子问题.为了满足运动学约束、 初始状态约束、目标状态约束以及曲率连续约束,本文采用由3个参数确定的四阶贝塞尔曲线来规划轨迹形状.为了保证转向机构可行,本文进一步采用优化方法求解一组最优参数从而规划出曲率变化最小的轨线.对于轨线执行速度规划,为了满足速度连续约束、加速度连续约束、加速度有界约束以及目标状态侧滑约束,本文首先求解了可行的轨迹执行耗时区间,再进一步在该区间中求解能够保证任意轨迹点满足侧滑约束的耗时,最后再由该耗时对任意点速度进行规划.本文结合实际无人车的应用对轨迹搜索空间生成、道路行车模拟以及路径跟踪进行了仿真实验,并基于实际的环境数据进行了轨迹规划实验.  相似文献   

5.
基于控制向量参数化(CVP)方法, 研究了计算机数控(CNC)系统光滑时间最优轨迹规划方法. 通过在规划问题中引入加加速度约束, 实现轨迹的光滑给进. 引入时间归一化因子, 将加加速度约束的时间最优轨迹规划问题转化为固定时间的一般性最优控制问题. 以路径参数对时间的三阶导数(伪加加速度)和终端时刻为优化变量, 并采用分段常数近似伪加加速度, 将最优控制问题转化为一般的非线性规划(NLP)问题进行求解. 针对加加速度、加速度等过程不等式约束, 引入约束凝聚函数, 将过程约束转化为终端时刻约束, 从而显著减少约束计算. 构造目标和约束函数的Hamiltonian函数, 利用伴随方法获得求解NLP问题所需的梯度.  相似文献   

6.
针对动态环境下的多Agent路径规划问题,提出了一种改进的蚁群算法与烟花算法相结合的动态路径规划方法。通过自适应信息素强度值及信息素缩减因子来加快算法的迭代速度,并利用烟花算法来解决路径规划过程中的死锁问题,避免陷入局部最优。在多Agent动态避碰过程中,根据动态障碍物与多Agent之间的运行轨迹是否相交制定相应的避碰策略,并利用路径转变函数解决多Agent的正面碰撞问题。仿真实验表明,该方法优于经典蚁群算法,能够有效解决多Agent路径规划中的碰撞问题,从而快速找到最优无碰路径。  相似文献   

7.
一种新的PUMA类型机器人奇异回避算法   总被引:2,自引:0,他引:2  
传统的奇异回避方法运算量大, 本文提出了一种新的 PUMA 类型机器人奇异回避方法—奇异分离加阻尼倒数法. 首先, 分析产生奇异的条件, 将导致 Jacobian 奇异的参数分离出来, 然后用阻尼倒数代替其普通倒数, 以回避运动学奇异的影响. 该方法无需对 Jacobian 进行 SVD 分解, 也无需估计其最小奇异值, 因而运算量小, 实时性好, 仅牺牲末端部分方向的精度, 适合于预定轨迹和实时轨迹的跟踪. 仿真和实验结果证明了算法的有效性.  相似文献   

8.
针对结构化道路下作匀速运动的智能车辆避障轨迹规划问题,提出一种基于凸近似避障原理及采样区域优化的智能车辆轨迹规划方法。引入凸近似避障原理,得到轨迹可行域范围;将采样区域分为静态采样区、动态采样区两部分,并根据障碍物运动状态,另外划分动态、静态障碍物采样区;采用“动态规划(DP)+二次规划(QP)”思想求解轨迹:利用五次多项式对采样点依次连接,建立动态规划代价函数并筛选得到粗略轨迹;通过二次规划及约束条件的构造,对粗略轨迹进行平滑,最终得到最优轨迹。仿真结果表明:对于静态、低速、动态三种障碍物,该车能够有效地得到平滑轨迹并避开障碍物。  相似文献   

9.
张金学  李媛媛  掌明 《计算机仿真》2012,29(1):176-179,205
在自主移动机器人的许多应用中,路径规划技术顺序地设置一套分散的路径点来引导机器人以最短的时间从起始位置到达目标点。针对移动机器人路径规划问题,提出了一种非完整型机器人路径规划技术,该技术采用基本原子操纵方法来解决车型机器人路径规划问题,并采用平滑路径规划方法来产生更多的连续路径用以解决基本原子操纵技术在做路径规划时具有很不连续的缺点从而为机器人获得最优路径。仿真结果证明了该方法的有效性和实用性。  相似文献   

10.
王洪斌  尹鹏衡  郑维  王红  左佳铄 《机器人》2020,42(3):346-353
提出了一种改进的A*算法与动态窗口法相结合的混合算法,以解决移动机器人在多目标复杂环境中的路径规划问题.首要,为了提升算法的运行效率,实现单次规划的路径可通过多个目标点,同时提升路径平滑处理的灵活性并满足移动机器人非完整约束条件,本文利用目标成本函数对所有目标进行优先级判定,进而利用改进的A*算法规划一条经过多个目标点的最优路径,同时采用自适应圆弧优化算法与加权障碍物步长调节算法,有效地将路径长度缩短5%,转折角总度数降低26.62%.其次,为实现移动机器人在动态复杂环境中局部避障并追击动态目标点.提出将改进动态窗口算法与全局路径规划信息相结合的在线路径规划法,采用预瞄偏差角追踪法成功捕捉移动目标点,并提升了路径规划效率.最后,对所提方法进行仿真实验,结果表明该方法能够在复杂动态环境中更有效地实现路径规划.  相似文献   

11.
Real‐life work operations of industrial robotic manipulators are performed within a constrained state space. Such operations most often require accurate planning and tracking a desired trajectory, where all the characteristics of the dynamic model are taken into consideration. This paper presents a general method and an efficient computational procedure for path planning with respect to state space constraints. Given a dynamic model of a robotic manipulator, the proposed solution takes into consideration the influence of all imprecisely measured model parameters, making use of iterative learning control (ILC). A major advantage of this solution is that it resolves the well‐known problem of interrupting the learning procedure due to a high transient tracking error or when the desired trajectory is planned closely to the state space boundaries. The numerical procedure elaborated here computes the robot arm motion to accurately track a desired trajectory in a constrained state space taking into consideration all the dynamic characteristics that influence the motion. Simulation results with a typical industrial robot arm demonstrate the robustness of the numerical procedure. In particular, the results extend the applicability of ILC in robot motion control and provide a means for improving the overall trajectory tracking performance of most robotic systems.  相似文献   

12.
工作空间坐标下操作器的运动规划与控制   总被引:1,自引:0,他引:1  
蒋平  王月娟 《机器人》1991,13(1):17-26
本文针对操作器的工作空间坐标下轨线跟踪,提出了直接利用跟踪误差进行规划和控制的设计方案.这一规划方案基于速度矢量的线性合成原理.同时借助于定义一个偏差超平面,利用滑动模控制的思想,将原非线性规划问题转化为线性规划问题,特别适用于具有冗余自由度的操作器,并且不再要求操作器参数、定位等非常精确;而这一控制方案将规划过程统一于控制器之中,直接对跟踪误差进行控制,可以得到更加优秀的外部品质.  相似文献   

13.
An optimization approach is proposed in this paper for generating smooth and time-optimal path constrained tool trajectory for Cartesian computer numerical control (CNC) manufacturing systems. The desired smooth time-optimal trajectory generation (STOTG) problem is formulated as a general optimal control problem. And axis jerk (derivative of acceleration with respect to time) constraints are introduced into this problem to remove discontinuities of the acceleration profiles. The desired smoothness of the trajectory can be accomplished by adjusting the values of jerk constraints. A control vector parameterization (CVP) method is applied to convert the optimal control problem into a nonlinear programming (NLP) problem which can be solved conveniently and effectively. The third derivative of the path parameter with respect to time (pseudo-jerk) and jerk act as optimization variables. The pseudo-jerk is approximated as piecewise constant, thus for at least second-order continuous parametric path, the resulted optimized trajectory with respect to time is also at least second-order continuous. Sequential quadratic programming (SQP) method is used to solve the NLP problem, through which numerical solution is obtained. Non-smooth (i.e. without considering jerk constraints) time-optimal trajectory generation (non-STOTG) problem is also considered in this paper for the purpose of comparison. Solutions of time-optimal trajectory generation (TOTG) problems for two test paths are performed to verify the effectiveness of the proposed approach.  相似文献   

14.
一种基于罚函数的机器人路径规划方法   总被引:2,自引:0,他引:2  
给出了一种基于罚函数的机器人路径规划方法;这种方法将机器人的路径规划由一系列带约束非线形规划问题转化为一系列无约束非线形规划问题来求解,仿真结果表明,罚函数方法是一种富有效率的解决机器人路径规划问题的方法,能够大幅度降低运算时间的复杂性,提高移动机器人的实时性。  相似文献   

15.
We study the problem of converting a trajectory tracking controller to a path tracking controller for a nonlinear non-minimum phase longitudinal aircraft model. The solution of the trajectory tracking problem is based on the requirement that the aircraft follows a given time parameterized trajectory in inertial frame. In this paper we introduce an alternative nonlinear control design approach called path tracking control. The path tracking approach is based on designing a nonlinear state feedback controller that maintains a desired speed along a desired path with closed loop stability. This design approach is different from the trajectory tracking approach where aircraft speed and position are regulated along the desired path. The path tracking controller regulates the position errors transverse to the desired path but it does not regulate the position error along the desired path. First, a trajectory tracking controller, consisting of feedforward and static state feedback, is designed to guarantee uniform asymptotic trajectory tracking. The feedforward is determined by solving a stable noncausal inversion problem. Constant feedback gains are determined based on LQR with singular perturbation approach. A path tracking controller is then obtained from the trajectory tracking controller by introducing a suitable state projection.  相似文献   

16.
基于有向图的动态最优航迹规划算法   总被引:1,自引:0,他引:1  
谢燕武  王伟  李爱军 《测控技术》2006,25(10):78-81
地形跟随/地形回避(TF/TA)航迹规划是低空突防系统的关键技术之一.通常所使用的动态规划算法得到的规划航迹有时达不到目标点.针对此问题,提出一种最优航迹规划的改进动态规划算法,通过对数字地图进行网格划分并建立有向图的方法改进动态规划算法,使最优航迹能有效地回避障碍和威胁.仿真结果表明,所提出的航迹规划算法是有效的.  相似文献   

17.
Approximation of a desired robot path can be accomplished by interpolating a curve through a sequence of joint-space knots. A smooth interpolated trajectory can be realized by using trigonometric splines. But, sometimes the joint trajectory is not required to exactly pass through the given knots. The knots may rather be centers of tolerances near which the trajectory is required to pass. In this article, we optimize trigonometric splines through a given set of knots subject to user-specified knot tolerances. The contribution of this article is the straightforward way in which intermediate constraints (i.e., knot angles) are incorporated into the parameter optimization problem. Another contribution is the exploitation of the decoupled nature of trigonometric splines to reduce the computational expense of the problem. The additional freedom of varying the knot angles results in a lower objective function and a higher computational expense compared to the case in which the knot angles are constrained to exact values. The specific objective functions considered are minimum jerk and minimum torque. In the minimum jerk case, the optimization problem reduces to a quadratic programming problem. Simulation results for a two-link manipulator are presented to support the results of this article.  相似文献   

18.
在工业生产过程中,桥式吊车系统经常会体现出双摆系统的特性,导致更多欠驱动状态量的出现,增大控制难度.基于此,论文提出了一种针对双摆桥式吊车系统的时间最优轨迹规划方法,可以得到全局时间最优且具有消摆能力的轨迹.具体而言,为方便地构造以时间为代价函数的优化问题,首先对系统运动学模型进行相应的变换;在此基础上,考虑包括两级摆角及台车速度和加速度上限值在内的多种约束,构造出相应的优化问题;然后,利用高斯伪谱法(Gauss-pseudospectral method, GPM)将该带约束的优化问题转化为更易于求解的非线性规划问题,且在转化过程中,可以非常方便地考虑轨迹约束.求解该非线性规划问题,即可得到时间最优的台车轨迹.不同于已有的大多数方法,该方法可获得全局时间最优的结果.最后,通过仿真与实验结果验证了这种时间最优轨迹规划方法具有满意的控制性能.  相似文献   

19.
双臂机器人时间最优轨迹规划研究   总被引:7,自引:1,他引:6  
钱东海  马毅潇  赵锡芳 《机器人》1999,21(2):98-103
本论文对双臂机器人时间最优轨迹规划问题作了深入研究,成功地运用了动态规划法 ,对沿着特定路径运动的双臂机器人左、右臂进行了时间最优轨迹规划,从而保证机器人左 、右臂在无碰撞的前提下,实现时间最优运动.算法通过了计算机仿真实验,证明算法可行 ,效率较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号