首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提高永磁直线同步电机(PMLSM)的位置跟踪精度,本文提出了一种基于神经网络自适应观测器的反推终端滑模控制(TSMC)方法.首先,建立PMLSM的动力学模型.然后,利用RBF神经网络的万能逼近特性去逼近系统中不确定性,并将逼近后的输出信号输入给自适应观测器进行跟踪目标位置和速度的估计,补偿由不确定性所导致的跟踪误差,进而获得高精度的跟踪性能.同时反推TSMC方法能够保证系统状态在有限时间内收敛,有效改善了系统响应速度和鲁棒性能.此外,设计出一种新型饱和函数来改善系统抖振,并利用Lyapunov稳定性定理进行了闭环系统稳定性分析.最后,通过空载和负载实验证实了该控制方案的有效性.  相似文献   

2.
The problem of tracking control for a class of uncertain non-affine discrete-time nonlinear systems with internal dynamics is addressed. The fixed point theorem is first employed to ensure the control problem in question is solvable and well-defined. Based on it, an adaptive output feedback control scheme based on neural network (NN) is presented. The proposed control algorithm consists of two parts: a dynamic compensator is introduced to stabilise the linear portion of the tracking error system; a single-hidden-layer neural network (SHL NN) approximation mechanism is introduced to cancel the uncertainties resulting from the non-affine function, where the recursive weight update rules of NN estimation are derived from the discrete-time version of Lyapunov control theory. Ultimate boundedness of the error signals is shown through Lyapunov’s direct method and the discrete-time version of input-to-state stability (ISS) theory. Finally, a model of automatical underwater vehicle (AUV) is considered to show the effectiveness of the proposed control scheme.  相似文献   

3.
This study proposes an indirect adaptive self-organizing RBF neural control (IASRNC) system which is composed of a feedback controller, a neural identifier and a smooth compensator. The neural identifier which contains a self-organizing RBF (SORBF) network with structure and parameter learning is designed to online estimate a system dynamics using the gradient descent method. The SORBF network can add new hidden neurons and prune insignificant hidden neurons online. The smooth compensator is designed to dispel the effect of minimum approximation error introduced by the neural identifier in the Lyapunov stability theorem. In general, how to determine the learning rate of parameter adaptation laws usually requires some trial-and-error tuning procedures. This paper proposes a dynamical learning rate approach based on a discrete-type Lyapunov function to speed up the convergence of tracking error. Finally, the proposed IASRNC system is applied to control two chaotic systems. Simulation results verify that the proposed IASRNC scheme can achieve a favorable tracking performance.  相似文献   

4.
考虑车辆线控转向(SbW)系统存在不确定动态特性以及外界干扰影响.本文提出一种带有干扰观测器的复合自适应神经网络实现SbW系统的精确建模与稳定控制.首先,利用神经网络在线逼近系统不确定动态,避免控制器设计中使用到系统模型的先验知识.然后,结合系统的跟踪误差与建模误差提出一种新的复合自适应学习率来更新神经网络的权值,从而加快跟踪误差的收敛速度.最后通过设计干扰观测器补偿系统受到摩擦力矩、回正力矩与神经网络逼近误差的影响,提高了系统的抗干扰能力.李雅普诺夫稳定性理论证明了闭环系统的跟踪误差信号一致最终有界.数值仿真与硬件在环实验结果验证了该控制方法的有效性和优越性.  相似文献   

5.
This paper presents a robust adaptive output feedback control design method for uncertain non-affine non-linear systems, which does not rely on state estimation. The approach is applicable to systems with unknown but bounded dimensions and with known relative degree. A neural network is employed to approximate the unknown modelling error. In fact, a neural network is considered to approximate and adaptively make ineffective unknown plant non-linearities. An adaptive law for the weights in the hidden layer and the output layer of the neural network are also established so that the entire closed-loop system is stable in the sense of Lyapunov. Moreover, the robustness of the system against the approximation error of neural network is achieved with the aid of an additional adaptive robustifying control term. In addition, the tracking error is guaranteed to be uniformly and asymptotically stable, rather than uniformly ultimately bounded, by using this additional control term. The proposed control algorithm is relatively straightforward and no restrictive conditions on the design parameters for achieving the systems stability are required. The effectiveness of the proposed scheme is shown through simulations of a non-affine non-linear system with unmodelled dynamics, and is compared with a second-sliding mode controller.  相似文献   

6.
针对机械臂受内部摩擦和时变扰动等不确定性因素的影响,其轨迹跟踪控制系统的跟踪精度会下降,且影响系统的稳定性,提出一种基于径向基函数神经网络的自适应控制方法。首先,利用RBF神经网络采用离线训练和在线学习的方式对机械臂的动力学模型进行辨识;其次针对机械臂控制系统中的摩擦,设计RBF神经网络自适应控制算法对其进行逼近得到补偿控制量。针对时变扰动和神经网络逼近误差设计鲁棒项,以克服众多不确定性因素带来的影响,同时通过构造李亚普诺夫函数对所设计的控制系统进行稳定性分析;最后,仿真实验结果证明提出的控制方法具有较高的跟踪精度、抗干扰能力和较强的鲁棒性。  相似文献   

7.
In this paper, an adaptive neural network-based controller is proposed for a space robot system with an attitude controlled base without joint acceleration measurements and in the presence of parametric uncertainties and external disturbances. Based on the dynamic model, a neural network-based controller is proposed that achieves the required tracking effectively. A feedforward neural network is employed to learn the existing unknown dynamics of robot system. The uniform ultimate boundedness of all signals in the closed-loop system is guaranteed by the Lyapunov approach. It is shown that the neural network can cope with the unknown nonlinearities through the adaptive learning process and requires no preliminary off learning. Finally, simulation study has been performed to evaluate the controller performance.  相似文献   

8.
本文针对机械手轨迹跟随控制问题,提出了一种稳定的神经网络自适应控制器设计方法,这里机械的非线性动力学假设是未知的,提出方法是神经网络方法和扇区自适应变结构控制方法的集成,扇区变结构控制的作用有两个,其一是在系统神经网络控制失灵的情形下提供闭环系统的全局稳定性;其二是在神经网络的近似域内改进系统的跟随性能,本文采用李雅普诺夫稳定理论给出了的稳定性和跟随误差收敛性的证明,并且通过数字仿真验证了提出方法  相似文献   

9.
This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm. The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory. The unmodeled dynamics of the system are considered, and an adaptive neural network controller is designed using the backstepping method and radial basis function neural network. The stability of the closed-loop system and the boundedness of the tracking error are verified using Lyapunov theory. The simulation results show that our approach is a good solution to the motion constraint problem of the line-driven soft robotic arm.   相似文献   

10.
A new adaptive backpropagation (BP) algorithm based on Lyapunov stability theory for neural networks is developed in this paper. It is shown that the candidate of a Lyapunov function V(k) of the tracking error between the output of a neural network and the desired reference signal is chosen first, and the weights of the neural network are then updated, from the output layer to the input layer, in the sense that DeltaV(k)=V(k)-V(k-1)<0. The output tracking error can then asymptotically converge to zero according to Lyapunov stability theory. Unlike gradient-based BP training algorithms, the new Lyapunov adaptive BP algorithm in this paper is not used for searching the global minimum point along the cost-function surface in the weight space, but it is aimed at constructing an energy surface with a single global minimum point through the adaptive adjustment of the weights as the time goes to infinity. Although a neural network may have bounded input disturbances, the effects of the disturbances can be eliminated, and asymptotic error convergence can be obtained. The new Lyapunov adaptive BP algorithm is then applied to the design of an adaptive filter in the simulation example to show the fast error convergence and strong robustness with respect to large bounded input disturbances  相似文献   

11.
The paper studies the design and analysis of a neural adaptive control strategy for a class of square nonlinear bioprocesses with incompletely known and time-varying dynamics. In fact, an adaptive controller based on a dynamical neural network used as a model of the unknown plant is developed. The neural controller design is achieved by using an input–output feedback linearization technique. The adaptation laws of neural network weights are derived from a Lyapunov stability property of the closed-loop system. The convergence of the system tracking error to zero is guaranteed without the need of network weights convergence. The resulted control method is applied in a depollution control problem in the case of a wastewater treatment bioprocess, belonging to the square nonlinear class, for which kinetic dynamics are strongly nonlinear, time varying and not exactly known.  相似文献   

12.
In this paper, a stable fuzzy neural tracking control of a class of unknown nonlinear systems based on the fuzzy hierarchy approach is proposed. The adaptive fuzzy neural controller is constructed from the fuzzy neural network with a set of fuzzy rules. The corresponding network parameters are adjusted online according to the control law and update law for the purpose of controlling the plant to track a given trajectory. A stability analysis of the unknown nonlinear system is discussed based on the Lyapunov principle. In order to improve the convergence of the nonlinear dynamical systems, a fuzzy hierarchy error approach (FHEA) algorithm is incorporated into the adaptive update and control scheme. The simulation results for an unstable nonlinear plant demonstrate the control effectiveness of the proposed adaptive fuzzy neural controller and are consistent with the theoretical analysis.  相似文献   

13.
具有柔性关节的轻型机械臂因其自重轻、响应迅速、操作灵活等优点,取得了广泛应用;针对具有柔性关节的机械臂系统的关节空间轨迹跟踪控制系统动力学参数不精确的问题,提出一种结合滑模变结构设计的自适应控制器算法;通过自适应控制的思想对系统动力学参数进行在线辨识,并采用Lyapunov方法证明了闭环系统的稳定性;仿真结果表明,该控制策略保证了机械臂系统对期望轨迹的快速跟踪,具有良好的跟踪精度,系统具有稳定性。  相似文献   

14.
针对一类同时具有参数及非参数不确定性的自由漂浮空间机器人系统的轨迹跟踪问题,采用了一种RBF神经网络的自适应鲁棒补偿控制策略.对于系统的参数不确定性,通过对径向基神经网络来自适应学习并补偿,逼近误差通过滑模控制器消除,神经网络权重的自适应修正规则基于Lyapunov函数方法得到;而非参数不确定通过鲁棒控制器来实时自适应...  相似文献   

15.
This paper studies synchronization to a desired trajectory for multi‐agent systems with second‐order integrator dynamics and unknown nonlinearities and disturbances. The agents can have different dynamics and the treatment is for directed graphs with fixed communication topologies. The command generator or leader node dynamics is also nonlinear and unknown. Cooperative tracking adaptive controllers are designed based on each node maintaining a neural network parametric approximator and suitably tuning it to guarantee stability and performance. A Lyapunov‐based proof shows the ultimate boundedness of the tracking error. A simulation example with nodes having second‐order Lagrangian dynamics verifies the performance of the cooperative tracking adaptive controller. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
基于动态递归模糊神经网络的自适应电液位置跟踪系统   总被引:1,自引:1,他引:1  
提出了动态递归模糊神经网络(DRFNN)以在线估计电液位置跟踪系统中包括非线性、参数不确定性、负载干扰等在内的未知动态非线性函数,基于lyapunov稳定性理论推导出DRFNN可调参数和估计误差的界的自适应律,并构造出稳定的自适应控制器.实验结果表明:基于DRFNN的自适应控制器可使电液位置跟踪系统具有较强的鲁棒性和满意的跟踪性能.  相似文献   

17.
提出一种针对机器人跟踪控制的神经网络自适应滑模控制策略。该控制方案将神经网络的非线性映射能力与滑模变结构和自适应控制相结合。对于机器人中不确定项,通过RBF网络分别进行自适应补偿,并通过滑模变结构控制器和自适应控制器消除逼近误差。同时基于Lyapunov理论保证机器手轨迹跟踪误差渐进收敛于零。仿真结果表明了该方法的优越性和有效性。  相似文献   

18.
基于扰动观测器的机器人自适应神经网络跟踪控制研究   总被引:1,自引:0,他引:1  
为解决机器人动力学模型未知问题并提升系统鲁棒性,本文基于扰动观测器,考虑动力学模型未知的情况,设计了一种自适应神经网络(Neural network,NN)跟踪控制器.首先分析了机器人运动学和动力学模型,针对模型已知的情况,提出了刚体机械臂通用模型跟踪控制策略;在考虑动力学模型未知的情况下,利用径向基函数(Radial basis function,RBF)神经网络设计基于全状态反馈的自适应神经网络跟踪控制器,并通过设计扰动观测器补偿系统中的未知扰动.利用李雅普诺夫理论证明所提出的控制策略可以使闭环系统误差信号半全局一致有界(Semi-globally uniformly bounded,SGUB),并通过选择合适的增益参数可以将跟踪误差收敛到零域.仿真结果证明所提出算法的有效性并且所提出的控制器在Baxter机器人平台上得到了实验验证.  相似文献   

19.
In the conventional CMAC-based adaptive controller design, a switching compensator is designed to guarantee system stability in the Lyapunov stability sense but the undesirable chattering phenomenon occurs. This paper proposes a CMAC-based smooth adaptive neural control (CSANC) system that is composed of a neural controller and a saturation compensator. The neural controller uses a CMAC neural network to online mimic an ideal controller and the saturation compensator is designed to dispel the approximation error between the ideal controller and neural controller without any chattering phenomena. The parameter adaptive algorithms of the CSANC system are derived in the sense of Lyapunov stability, so the system stability can be guaranteed. Finally, the proposed CSANC system is applied to a Chua’s chaotic circuit and a DC motor driver. Simulation and experimental results show the CSANC system can achieve a favorable tracking performance. It should be emphasized that the development of the proposed CSANC system doesn’t need the knowledge of the system dynamics.  相似文献   

20.
针对一类动力学未知或难以建模的采样非线性系统,提出了一种基于神经网络的跟随控 制器稳定自适应控制方法.控制器采用径向基函数神经网络近似对象的动力学非线性,神经 网络参数的自适应规律由稳定理论得到.文中给出了系统稳定性和跟随误差收敛性的证明, 并通过仿真实例揭示了所提方法的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号