首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Feature weighting based band selection provides a computationally undemanding approach to reduce the number of hyperspectral bands in order to decrease the computational requirements for processing large hyperspectral data sets. In a recent feature weighting based band selection method, a pair‐wise separability criterion and matrix coefficients analysis are used to assign weights to original bands, after which bands identified to be redundant using cross correlation are removed, as it is noted that feature weighting itself does not consider spectral correlation. In the present work, it is proposed to use phase correlation instead of conventional cross correlation to remove redundant bands in the last step of feature weighting based hyperspectral band selection. Support Vector Machine (SVM) based classification of hyperspectral data with a reduced number of bands is used to evaluate the classification accuracy obtained with the proposed approach, and it is shown that feature weighting band selection with the proposed phase correlation based redundant band removal method provides increased classification accuracy compared to feature weighting band selection with conventional cross correlation based redundant band removal.  相似文献   

2.
This paper describes a two-stage feature fusion method for ultrasonic liver tissue characterization. The proposed method hierarchically incorporates a genetic-algorithm-based feature selection to automatically select more efficient feature subset to discriminate among ultrasonic images of liver tissue in three states: normal liver, cirrhosis, and hepatoma. Multiple feature spaces are adopted in this paper, including the spatial gray-level dependence matrices (SGLDMs), multiresolution fractal feature vector and multiresolution energy feature vector. Features extracted from different feature spaces may contain complementary information. The feature subsets of different feature spaces are fused and the genetic-algorithm-based feature selection is applied onto the fused feature space to facilitate the two-stage feature fusion. The classification accuracy of the fused feature subset is up to 96.62%. Experimental results demonstrate that the proposed method is capable to select discriminative features among multiple feature vectors to achieve the early detection of hepatoma and cirrhosis based on ultrasonic liver imaging.  相似文献   

3.
The proposed work involves the multiobjective PSO based adaption of optimal neural network topology for the classification of multispectral satellite images. It is per pixel supervised classification using spectral bands (original feature space). This paper also presents a thorough experimental analysis to investigate the behavior of neural network classifier for given problem. Based on 1050 number of experiments, we conclude that following two critical issues needs to be addressed: (1) selection of most discriminative spectral bands and (2) determination of optimal number of nodes in hidden layer. We propose new methodology based on multiobjective particle swarm optimization (MOPSO) technique to determine discriminative spectral bands and the number of hidden layer node simultaneously. The accuracy with neural network structure thus obtained is compared with that of traditional classifiers like MLC and Euclidean classifier. The performance of proposed classifier is evaluated quantitatively using Xie-Beni and β indexes. The result shows the superiority of the proposed method to the conventional one.  相似文献   

4.
We propose a new spatial feature extraction method for supervised classification of satellite images with high spatial resolution. The proposed shape–size index (SSI) feature combines homogeneous areas using spectral similarity between one central pixel and its neighbouring pixels. A spatial index considers the shape and size of the homogeneous area, and suitable spatial features are parametrically selected. The generated SSI feature is integrated with the original high resolution multispectral bands to improve the overall classification accuracy. A support vector machine (SVM) is employed as a classifier. In order to evaluate the proposed feature extraction method, KOMPSAT-2 (Korea Multipurpose Satellite 2), QuickBird-2 and IKONOS-2 high resolution satellite images are used. The experiments show that the SSI algorithm leads to a notable increase in classification accuracy over the grey level co-occurrence matrix (GLCM) and pixel shape index (PSI) algorithms, and an increase when compared with using multispectral bands only.  相似文献   

5.
Feature selection is a useful pre-processing technique for solving classification problems. The challenge of solving the feature selection problem lies in applying evolutionary algorithms capable of handling the huge number of features typically involved. Generally, given classification data may contain useless, redundant or misleading features. To increase classification accuracy, the primary objective is to remove irrelevant features in the feature space and to correctly identify relevant features. Binary particle swarm optimization (BPSO) has been applied successfully to solving feature selection problems. In this paper, two kinds of chaotic maps—so-called logistic maps and tent maps—are embedded in BPSO. The purpose of chaotic maps is to determine the inertia weight of the BPSO. We propose chaotic binary particle swarm optimization (CBPSO) to implement the feature selection, in which the K-nearest neighbor (K-NN) method with leave-one-out cross-validation (LOOCV) serves as a classifier for evaluating classification accuracies. The proposed feature selection method shows promising results with respect to the number of feature subsets. The classification accuracy is superior to other methods from the literature.  相似文献   

6.
In this article, a feature selection algorithm for hyperspectral data based on a recursive support vector machine (R‐SVM) is proposed. The new algorithm follows the scheme of a state‐of‐the‐art feature selection algorithm, SVM recursive feature elimination or SVM‐RFE, and uses a new ranking criterion derived from the R‐SVM. Multiple SVMs are used to address the multiclass problem. The algorithm is applied to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to select the most informative bands and the resulting subsets of the bands are compared with SVM‐RFE using the accuracy of classification as the evaluation of the effectiveness of the feature selection. The experimental results for an agricultural case study indicate that the feature subset generated by the newly proposed algorithm is generally competitive with SVM‐RFE in terms of classification accuracy and is more robust in the presence of noise.  相似文献   

7.
This paper proposes an automatic classification system for the use in prostate cancer diagnosis. The system aims to detect and classify prostatic tissue textures captured from microscopic samples taken from needle biopsies. Biopsies are usually analyzed by a trained pathologist with different grades of malignancy typically corresponding to different structural patterns as well as apparent textures. In the context of prostate cancer diagnosis, four major groups have to be accurately recognized: stroma, benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and prostatic carcinoma. Recently, multispectral imagery has been proposed as a new image acquisition modality which unlike conventional RGB-based light microscopy allows the acquisition of a large number of spectral bands within the visible spectrum, resulting in a large feature vector size. Many features in the initial feature set are irrelevant to the classification task and are correlated with each other, resulting in an increase in the computational complexity and a reduction in the recognition rate. In this paper, a Round-Robin (RR) sequential forward selection RR-SFS is used to address these problems. RR is a technique for handling multi-class problems with binary classifiers by training one classifier for each pair of classes. The experimental results demonstrate this finding when compared with classical method based on the multiclass SFS and other ensemble methods such as bagging/boosting with decision tree (C4.5) classifier where it is shown that RR-SFS method achieves the best results with a classification accuracy of 99.9%.  相似文献   

8.
针对监督分类中的特征选择问题, 提出一种基于量子进化算法的包装式特征选择方法. 首先分析了现有子集评价方法存在过度偏好分类精度的缺点, 进而提出基于固定阈值和统计检验的两种子集评价方法. 然后改进了量子进化算法的进化策略, 即将整个进化过程分为两个阶段, 分别选用个体极值和全局极值作为种群的进化目标. 在此基础上, 按照包装式特征选择遵循的一般框架设计了特征选择算法. 最后, 通过15个UCI数据集分别验证了子集评价方法和进化策略的有效性, 以及新方法相较于其它6种特征选择方法的优越性. 结果表明, 新方法在80%以上的数据集上取得相似甚至更好的分类精度, 在86.67%的数据集上选择了特征个数更小的子集.  相似文献   

9.
低层特征的选择与提取是自动图像分类的基础,一方面,所选择的图像特征应能代表各种不同的图像属性,利于不同类别图像之间的区分;另一方面,为了提高后续模型的计算效率,需要减少噪声特征、冗余特征.提出了一种基于特征加权的自动图像分类方法.该方法根据图像低层特征分布的离散程度来衡量特征相对于类别的重要性,增加相关度高的特征的权重,降低相关度低的特征权重,从而避免后续模型被弱相关或不相关的特征所支配.所提的特征加权算法主要考察的是特征相对某个具体类别的重要程度,可以为每个类别选择出适合自身的特征权重.然后,将加权特征嵌入到支持向量机算法中用于自动图像分类,在Corel图像数据集上的实验结果表明,基于特征加权的自动图像分类算法可以有效地提高图像分类的准确性.  相似文献   

10.
Hyperspectral images usually consist of hundreds of spectral bands, which can be used to precisely characterize different land cover types. However, the high dimensionality also has some disadvantages, such as the Hughes effect and a high storage demand. Band selection is an effective method to address these issues. However, most band selection algorithms are conducted with the high-dimensional band images, which will bring high computation complexity and may deteriorate the selection performance. In this paper, spatial feature extraction is used to reduce the dimensionality of band images and improve the band selection performance. The experiment results obtained on three real hyperspectral datasets confirmed that the spatial feature extraction-based approach exhibits more robust classification accuracy when compared with other methods. Besides, the proposed method can dramatically reduce the dimensionality of each band image, which makes it possible for band selection to be implemented in real time situations.  相似文献   

11.
Brain tumor grade identification is an invasive technique and clinicians rely on biopsy and spinal tap method. The proposed method takes an effort to develop a non-invasive method for the tumor grade (Low/High) identification using magnetic resonant images. The process involves preprocessing, image segmentation, tumor isolation, feature extraction, feature selection and classification. An analysis on the performance of the segmentation techniques, feature extraction methods, automatic feature selection (SFLA) and constructed classifiers (support vector machines, learning vector quantization and Naives Bayes) is done on the basis of accuracy, efficiency and elapsed time. This analysis motivates towards the accurate determination of tumor grade from MR images instead of depending on magnetic resonant spectroscopy and biopsy. Fuzzy c-means segmentation outperformed other segmentation techniques, shape and size based textural feature promoted the demarcation of tumor grades, Naive Bayes classifier succeeded in terms of efficiency, error and elapse time when compared with SVM and LVQ. The study was carried out with 200 images consisting training set (164 images) and testing set (36 images). The results revealed that the system is robust and accurate (91%), consumed less time in grade identification, an alternative for biopsy and MRS in the brain tumor grade identification diagnosis procedure.  相似文献   

12.
不平衡情感分类中的特征选择方法研究   总被引:1,自引:0,他引:1  
随着网络的发展,情感分类任务受到广大研究人员的密切关注。针对情感分类中的不平衡数据分布和高维特征问题,该文比较研究了四种经典的特征选择方法在不平衡情感分类中的应用。同时,该文提出了三种不同的特征选择模式并实验比较了这三种模式在分类和降维性能方面的表现。实验结果表明在不平衡数据的情感分类任务中,特征选择方法能够在不损失分类效果的前提下显著降低特征向量的维度。此外,特征选择方法中信息增益(IG)结合“先随机欠采样后特征选择”模式能够取得最佳的分类效果。  相似文献   

13.
This paper presents a spectral band selection method for feature dimensionality reduction in hyperspectral image analysis for detecting skin tumors on poultry carcasses. A hyperspectral image contains spatial information measured as a sequence of individual wavelength across broad spectral bands. Despite the useful information for skin tumor detection, real-time processing of hyperspectral images is often a challenging task due to the large amount of data. Band selection finds a subset of significant spectral bands in terms of information content for dimensionality reduction. This paper presents a band selection method of hyperspectral images based on the recursive divergence for the automatic detection of poultry carcasses. For this, we derive a set of recursive equations for the fast calculation of divergence with an additional band to overcome the computational restrictions in real-time processing. A support vector machine is used as a classifier for tumor detection. From our experiments, the proposed band selection method shows high detection accuracy with low false positive rates compared to the canonical analysis at a small number of spectral bands. Also, compared with the enumeration approach of 93.75% detection rate, our proposed recursive divergence approach gives 90.6% detection rate, which is within the industry-accepted accuracy of 90-95%, while achieving the computational saving for real-time processing.  相似文献   

14.
This paper presents a feature selection method for data classification, which combines a model-based variable selection technique and a fast two-stage subset selection algorithm. The relationship between a specified (and complete) set of candidate features and the class label is modeled using a non-linear full regression model which is linear-in-the-parameters. The performance of a sub-model measured by the sum of the squared-errors (SSE) is used to score the informativeness of the subset of features involved in the sub-model. The two-stage subset selection algorithm approaches a solution sub-model with the SSE being locally minimized. The features involved in the solution sub-model are selected as inputs to support vector machines (SVMs) for classification. The memory requirement of this algorithm is independent of the number of training patterns. This property makes this method suitable for applications executed in mobile devices where physical RAM memory is very limited.An application was developed for activity recognition, which implements the proposed feature selection algorithm and an SVM training procedure. Experiments are carried out with the application running on a PDA for human activity recognition using accelerometer data. A comparison with an information gain-based feature selection method demonstrates the effectiveness and efficiency of the proposed algorithm.  相似文献   

15.
In classification, feature selection is an important data pre-processing technique, but it is a difficult problem due mainly to the large search space. Particle swarm optimisation (PSO) is an efficient evolutionary computation technique. However, the traditional personal best and global best updating mechanism in PSO limits its performance for feature selection and the potential of PSO for feature selection has not been fully investigated. This paper proposes three new initialisation strategies and three new personal best and global best updating mechanisms in PSO to develop novel feature selection approaches with the goals of maximising the classification performance, minimising the number of features and reducing the computational time. The proposed initialisation strategies and updating mechanisms are compared with the traditional initialisation and the traditional updating mechanism. Meanwhile, the most promising initialisation strategy and updating mechanism are combined to form a new approach (PSO(4-2)) to address feature selection problems and it is compared with two traditional feature selection methods and two PSO based methods. Experiments on twenty benchmark datasets show that PSO with the new initialisation strategies and/or the new updating mechanisms can automatically evolve a feature subset with a smaller number of features and higher classification performance than using all features. PSO(4-2) outperforms the two traditional methods and two PSO based algorithm in terms of the computational time, the number of features and the classification performance. The superior performance of this algorithm is due mainly to both the proposed initialisation strategy, which aims to take the advantages of both the forward selection and backward selection to decrease the number of features and the computational time, and the new updating mechanism, which can overcome the limitations of traditional updating mechanisms by taking the number of features into account, which reduces the number of features and the computational time.  相似文献   

16.
随着各类生物智能演化算法的日益成熟,基于演化技术及其混合算法的特征选择方法不断涌现。针对高维小样本安全数据的特征选择问题,将文化基因算法(Memetic Algorithm,MA)与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)进行结合,设计了一种封装式(Wrapper)特征选择方法(MA-LSSVM)。该方法利用最小二乘支持向量机易于求解的特点来构造分类器,以分类的准确率作为文化基因算法寻优过程中适应度函数的主要成分。实验表明,MA-LSSVM可以较高效地、稳定地获取对分类贡献较大的特征,降低了数据维度,提高了分类效率。  相似文献   

17.
共空间模式(CSP)作为一种空间滤波方法已在脑电信号(EEG)的特征提取上得到了广泛应用,而对脑电信号的通道和频带进行合理选择可以有效改善共空间模式特征在运动想象脑机接口(BCI)中的分类性能.针对已有选择方法中未充分考虑通道间差异性的问题,本文提出一种对通道和频带同时进行选择的块选择共空间模式(BS–CSP)特征提取方法.首先针对每个通道进行频带划分从而构建数据块,然后根据时频特征计算对应的Fisher比表征每个块的分类能力,并设置阈值选出一定数量的最优块,最后用CSP和支持向量机(SVM)分别进行特征提取与分类.在对BCI Competition Ⅲ Datesate Ⅳa和BCI Competition Ⅳ Datesate Ⅰ两个二分类运动想象任务的分类实验中,平均分类精度达到了90.25%和83.78%,表明了所提出的特征提取方法的有效性和鲁棒性.  相似文献   

18.
Due to the very large number of bands in hyperspectral imagery, two major problems which arise during classification are the ‘curse of dimensionality’ and computational complexity. To overcome these, dimensionality reduction is an important task for hyperspectral image analysis. An unsupervised band elimination method is proposed which iteratively eliminates one band from the pair of most correlated neighbouring bands depending on the discriminating capability of the bands. Correlation between neighbouring bands is calculated over partitioned band images. Capacitory discrimination is used to measure the discrimination capability of a band image. Finally, four evaluation measures, namely classification accuracy, kappa coefficient, class separability, and entropy are calculated over the selected bands to measure the efficiency of the proposed method. The proposed unsupervised band elimination technique is compared to three popular state-of-the-art approaches, both qualitatively and quantitatively, and shows promising results compared to them.  相似文献   

19.
Feature and instance selection are two effective data reduction processes which can be applied to classification tasks obtaining promising results. Although both processes are defined separately, it is possible to apply them simultaneously.This paper proposes an evolutionary model to perform feature and instance selection in nearest neighbor classification. It is based on cooperative coevolution, which has been applied to many computational problems with great success.The proposed approach is compared with a wide range of evolutionary feature and instance selection methods for classification. The results contrasted through non-parametric statistical tests show that our model outperforms previously proposed evolutionary approaches for performing data reduction processes in combination with the nearest neighbor rule.  相似文献   

20.
面向对象的变化检测技术在高分辨率遥感图像领域已经得到广泛地应用。由于遥 感图像受光照、大气环境等成像条件的影响,图像特征的质量也参差不齐,筛选出高质量的特 征成为对象级遥感图像变化检测的关键。针对此问题,提出了一种基于 Relief-PCA 特征选择的 对象级遥感图像变化检测方法。首先,对原始图像进行多尺度分割获得目标对象,并提取对象 的光谱特征与纹理特征;然后,利用对数比值法获得变化矢量,再使用 Relief-PCA 特征选择的 方法对图像的对象特征进行筛选与降维;最后,计算并生成 CVA 变化强度图,利用 Otsu 方法 对变化强度图进行阈值分割得到最终的变化检测结果。实验表明:与已有方法相比,该方法的 变化检测精度更高,误检率和漏检率更低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号