首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Components in cold-standby state are usually assumed to be as good as new when they are activated. However, even in a standby environment, the components will suffer from performance degradation. This article presents a study of a redundancy allocation problem (RAP) for cold-standby systems with degrading components. The objective of the RAP is to determine an optimal design configuration of components to maximize system reliability subject to system resource constraints (e.g. cost, weight). As in most cases, it is not possible to obtain a closed-form expression for this problem, and hence, an approximated objective function is presented. A genetic algorithm with dual mutation is developed to solve such a constrained optimization problem. Finally, a numerical example is given to illustrate the proposed solution methodology.  相似文献   

2.
This paper proposed a penalty guided artificial bee colony algorithm (ABC) to solve the reliability redundancy allocation problem (RAP). The redundancy allocation problem involves setting reliability objectives for components or subsystems in order to meet the resource consumption constraint, e.g. the total cost. RAP has been an active area of research for the past four decades. The difficulty that one is confronted with the RAP is the maintenance of feasibility with respect to three nonlinear constraints, namely, cost, weight and volume related constraints. In this paper nonlinearly mixed-integer reliability design problems are investigated where both the number of redundancy components and the corresponding component reliability in each subsystem are to be decided simultaneously so as to maximize the reliability of the system. The reliability design problems have been studied in the literature for decades, usually using mathematical programming or heuristic optimization approaches. To the best of our knowledge the ABC algorithm can search over promising feasible and infeasible regions to find the feasible optimal/near-optimal solution effectively and efficiently; numerical examples indicate that the proposed approach performs well with the reliability redundant allocation design problems considered in this paper and computational results compare favorably with previously-developed algorithms in the literature.  相似文献   

3.
This paper develops an efficient heuristic to solve two typical combinatorial optimization problems frequently met when designing highly reliable systems. The first one is the redundancy allocation problem (RAP) of series-parallel binary-state systems. The design goal of the RAP is to select the optimal combination of elements and redundancy levels to maximize system reliability subject to the system budget and to the system weight. The second problem is the expansion-scheduling problem (ESP) of multi-state series-parallel systems. In this problem, the study period is divided into several stages. At each stage, the demand is represented as a piecewise cumulative load curve. During the system lifetime, the demand can increase and the total productivity may become insufficient to assume the demand. To increase the total system productivity, elements are added to the existing system. The objective in the ESP is to minimize the sum of costs of the investments over the study period while satisfying availability constraints at each stage. The heuristic approach developed to solve the RAP and the ESP is based on a combination of space partitioning, genetic algorithms (GA) and tabu search (TS). After dividing the search space into a set of disjoint subsets, this approach uses GA to select the subspaces, and applies TS to each selected subspace. Numerical results for the test problems from previous research are reported and compared. The results show the advantages of the proposed approach for solving both problems.  相似文献   

4.
The k-out-of-n: G heterogeneous cold-standby system structure is a widely used fault-tolerant system design method, where the sequence in which the different system elements are initiated can greatly affect the system reliability and mission cost. This paper considers the optimal standby element sequencing problem (SESP) for such systems. Given the desired cold-standby redundancy level and fixed set of element choices, the objective of the optimal system design is to select the initiation sequence of the system elements so as to minimize the expected system mission cost while meeting a certain level of system reliability constraint. Based on a discrete approximation of time-to-failure distributions of the system elements, the system reliability and expected mission cost are evaluated simultaneously using a numerical method. A genetic algorithm is used as an optimization tool for solving the formulated SESP problem for k-out-of-n: G heterogeneous cold-standby systems. Examples are given to illustrate the considered problem and the proposed solution methodology.  相似文献   

5.
为了进一步提高人力资源交叉培训规划的实用性,增加了对于员工学习行为的考虑,提出了在保证任务覆盖水平的基础上,获得员工满意度最大和学习效率最高的多目标优化模型.本文针对问题的特征,采用多目标粒子群(MOPSO)算法对多目标优化模型进行了求解,并设计了多种算法策略,以适应不同的问题环境.通过数值实验,分析了不同问题规模下,针对不同性能指标算法参数和策略的适用性.最后,以柔性单元装配生产线为例,进行了数值实验,实验结果表明了模型的有效性和合理性.  相似文献   

6.
In many real-world optimization problems, several conflicting objectives must be achieved and optimized simultaneously and the solutions are often required to satisfy certain restrictions or constraints. Moreover, in some applications, the numerical values of the objectives and constraints are obtained from computationally expensive simulations. Many multi-objective optimization algorithms for continuous optimization have been proposed in the literature and some have been incorporated or used in conjunction with expert and intelligent systems. However, relatively few of these multi-objective algorithms handle constraints, and even fewer, use surrogates to approximate the objective or constraint functions when these functions are computationally expensive. This paper proposes a surrogate-assisted evolution strategy (ES) that can be used for constrained multi-objective optimization of expensive black-box objective functions subject to expensive black-box inequality constraints. Such an algorithm can be incorporated into an intelligent system that finds approximate Pareto optimal solutions to simulation-based constrained multi-objective optimization problems in various applications including engineering design optimization, production management and manufacturing. The main idea in the proposed algorithm is to generate a large number of trial offspring in each generation and use the surrogates to predict the objective and constraint function values of these trial offspring. Then the algorithm performs an approximate non-dominated sort of the trial offspring based on the predicted objective and constraint function values, and then it selects the most promising offspring (those with the smallest predicted ranks from the non-dominated sort) to become the actual offspring for the current generation that will be evaluated using the expensive objective and constraint functions. The proposed method is implemented using cubic radial basis function (RBF) surrogate models to assist the ES. The resulting RBF-assisted ES is compared with the original ES and to NSGA-II on 20 test problems involving 2–15 decision variables, 2–5 objectives and up to 13 inequality constraints. These problems include well-known benchmark problems and application problems in manufacturing and robotics. The numerical results showed that the RBF-assisted ES generally outperformed the original ES and NSGA-II on the problems used when the computational budget is relatively limited. These results suggest that the proposed surrogate-assisted ES is promising for computationally expensive constrained multi-objective optimization.  相似文献   

7.
In designing phase of systems, design parameters such as component reliabilities and cost are normally under uncertainties. This paper presents a methodology for solving the multi-objective reliability optimization model in which parameters are considered as imprecise in terms of triangular interval data. The uncertain multi-objective optimization model is converted into deterministic multi-objective model including left, center and right interval functions. A conflicting nature between the objectives is resolved with the help of intuitionistic fuzzy programming technique by considering linear as well as the nonlinear degree of membership and non-membership functions. The resultants max–min problem has been solved with particle swarm optimization (PSO) and compared their results with genetic algorithm (GA). Finally, a numerical instance is presented to show the performance of the proposed approach.  相似文献   

8.
Multi-objective optimization has been a difficult problem and a research focus in the field of science and engineering. This paper presents a novel multi-objective optimization algorithm called elite-guided multi-objective artificial bee colony (EMOABC) algorithm. In our proposal, the fast non-dominated sorting and population selection strategy are applied to measure the quality of the solution and select the better ones. The elite-guided solution generation strategy is designed to exploit the neighborhood of the existing solutions based on the guidance of the elite. Furthermore, a novel fitness calculation method is presented to calculate the selecting probability for onlookers. The proposed algorithm is validated on benchmark functions in terms of four indicators: GD, ER, SPR, and TI. The experimental results show that the proposed approach can find solutions with competitive convergence and diversity within a shorter period of time, compared with the traditional multi-objective algorithms. Consequently, it can be considered as a viable alternative to solve the multi-objective optimization problems.  相似文献   

9.
针对汽车鼓式制动器,以制动效能因数最大、制动鼓体积最小和制动器温升最低为目标,建立了多目标优化模型。针对传统NSGA-II算法求解3目标优化问题的不足,引入正交设计策略,提出了改进的NSGA-II算法。将改进算法与目前三种经典的多目标优化算法在DTLZ系列测试函数上进行性能测试,结果表明改进算法在求解3目标优化问题上有更好的性能。用改进算法和NSGA-II两种算法同时求解制动器多目标优化设计实例,改进算法得到了分布更好的Pareto前端,表明改进算法对此类问题求解行之有效。  相似文献   

10.
正交设计的E占优策略求解高维多目标优化问题研究   总被引:2,自引:0,他引:2  
郭思涵  龚小胜 《计算机科学》2012,39(2):276-279,310
在实际应用中,传统多目标演化算法面临着高维多目标优化问题。针对这一缺陷,提出正交E占优(Orthogo-nality E-dominant,OE)策略。在OE策略的理论优越性设计的基础上,改进了当前5种具有代表性的演化多目标优化算法。改进前后的算法求解DTLZ1-6(20)测试问题的数值对比试验显示,OE策略改进后的算法在不同程度上提高了算法求解高维多目标优化问题的效果,从而证实了OE策略对演化多目标优化算法改进的有效性。  相似文献   

11.
For an effective and efficient application of machining processes it is often necessary to consider more than one machining performance characteristics for the selection of optimal machining parameters. This implies the need to formulate and solve multi-objective optimization problems. In recent years, there has been an increasing trend of using meta-heuristic algorithms for solving multi-objective machining optimization problems. Although having the ability to efficiently handle highly non-linear, multi-dimensional and multi-modal optimization problems, meta-heuristic algorithms are plagued by numerous limitations as a consequence of their stochastic nature. To overcome some of these limitations in the machining optimization domain, a software prototype for solving multi-objective machining optimization problems was developed. The core of the developed software prototype is an algorithm based on exhaustive iterative search which guarantees the optimality of a determined solution in a given discrete search space. This approach is justified by a continual increase in computing power and memory size in recent years. To analyze the developed software prototype applicability and performance, four case studies dealing with multi-objective optimization problems of non-conventional machining processes were considered. Case studies are selected to cover different formulations of multi-objective optimization problems: optimization of one objective function while all the other are converted into constraints, optimization of a utility function which combines all objective functions and determination of a set of Pareto optimal solutions. In each case study optimization solutions that had been determined by past researchers using meta-heuristic algorithms were improved by using the developed software prototype.  相似文献   

12.
鉴于电力需求的日益增长与传统无功优化方法的桎梏,如何更加合理有效地解决电力系统的无功优化问题逐渐成为了研究的热点。提出一种多目标飞蛾扑火算法来解决电力系统多目标无功优化的问题,算法引入固定大小的外部储存机制、自适应的网格和筛选机制来有效存储和提升无功优化问题的帕累托最优解集,算法采用CEC2009标准多目标测试函数来进行仿真实验,并与两种经典算法进行性能的对比分析。此外,在电力系统IEEE 30节点上将该算法与MOPSO,NGSGA-II算法的求解结果进行比较分析的结果表明,多目标飞蛾算法具有良好的性能,并在解决电力系统多目标无功优化问题上具有良好的潜力。  相似文献   

13.
The Resource Allocation Problem (RAP) is a classical problem in the field of operations management that has been broadly applied to real problems such as product allocation, project budgeting, resource distribution, and weapon-target assignment. In addition to focusing on a single objective, the RAP may seek to simultaneously optimize several expected but conflicting goals under conditions of resources scarcity. Thus, the single-objective RAP can be intuitively extended to become a Multi-Objective Resource Allocation Problem (MORAP) that also falls in the category of NP-Hard. Due to the complexity of the problem, metaheuristics have been proposed as a practical alternative in the selection of techniques for finding a solution. This study uses Variable Neighborhood Search (VNS) algorithms, one of the extensively used metaheuristic approaches, to solve the MORAP with two important but conflicting objectives—minimization of cost and maximization of efficiency. VNS searches the solution space by systematically changing the neighborhoods. Therefore, proper design of neighborhood structures, base solution selection strategy, and perturbation operators are used to help build a well-balanced set of non-dominated solutions. Two test instances from the literature are used to compare the performance of the competing algorithms including a hybrid genetic algorithm and an ant colony optimization algorithm. Moreover, two large instances are generated to further verify the performance of the proposed VNS algorithms. The approximated Pareto front obtained from the competing algorithms is compared with a reference Pareto front by the exhaustive search method. Three measures are considered to evaluate algorithm performance: D1R, the Accuracy Ratio, and the number of non-dominated solutions. The results demonstrate the practicability and promise of VNS for solving multi-objective resource allocation problems.  相似文献   

14.
Multi-objective optimization problems exist widely in the field of engineering and science. Many nature-inspired methods, such as genetic algorithms, particle swarm optimization algorithms and membrane computing model based algorithms, were proposed to solve the problems. Among these methods, membrane computing model based algorithms, also termed membrane algorithms, are becoming a current research hotspot because the successful linkage of membrane computing and evolutionary algorithms. In the past years, a lot of effective multi-objective membrane algorithms have been designed, where the skin membrane was often only used as an archive to store good solutions. In this paper, we propose an effective multi-objective membrane algorithm guided by the skin membrane, named SMG-MOMA, where the information of solutions stored in the skin membrane is used to guide the evolution of internal membranes. A skin membrane guiding strategy is suggested by allocating the solutions in skin membrane to internal membranes. Experimental results on ZDT and DTLZ benchmark multi-objective problems show that the proposed algorithm outperforms the-state-of-the-art multi-objective optimization algorithms.  相似文献   

15.
Maximizing the diversity of the obtained objective vectors and increasing the convergence speed to the true Pareto front are two important issues in the design of multi-objective evolutionary algorithms (MOEAs). To solve complex multi-objective optimization problems (MOPs), a multi-objective modified differential evolution algorithm with archive-base mutation (MOMDE-AM) is proposed. In MOMDE-AM, with the purpose of reducing the loss of population evolution information, a modified mutation strategy with archive is introduced, which could utilize several useful inferior solutions and provide promising direction information toward the true Pareto front. The performance of MOMDE-AM is compared with five other MOEAs on five bi-objective and five tri-objective optimization problems. The simulation and statistical analysis results indicate that the overall performance of MOMDE-AM is better than those of the compared algorithms on these test functions. Finally, MOMDE-AM is used to optimize ten operation conditions of the \(p\)-xylene oxidation reaction process; the results show that MOMDE-AM is an effective and efficient optimization tool for solving actual MOPs.  相似文献   

16.
武燕  石露露  周艳 《控制与决策》2020,35(10):2372-2380
生活中存在大量的动态多目标优化问题,应用进化算法求解动态多目标优化问题受到越来越多的关注,而动态多目标测试函数对算法的评估起着重要的作用.在已有动态多目标测试函数的基础上,设计一组新的动态多目标测试函数.Pareto最优解集和Pareto前沿面的不同变化形式影响着动态多目标测试函数的难易程度,通过引入Pareto最优解集形状的变化,结合已有的Pareto最优解集移动模式,设计一组测试函数集.基于提出的测试函数集,对3个算法进行测试,仿真实验结果表明,所设计的函数给3个算法带来了挑战,并展现出算法的优劣.  相似文献   

17.
针对约束多目标优化问题,提出了一种基于约束违背程度和Pareto支配的有效约束处理策略,并设计了一种新型多目标帝国竞争算法(MOICA).该算法采用一种简化的初始帝国构建过程,在同化过程引入了向外部档案内非劣解学习的机制,并基于帝国势力新定义的帝国竞争新方法以获取问题高质量的解.选用了7个测试问题CF1~CF7进行计算实验并和多种算法进行对比.计算结果表明, MOICA在求解约束多目标优化问题方面具有较强的搜索能力和优势.  相似文献   

18.
何盼  郑志浩  袁月  谭春 《软件学报》2017,28(2):443-456
在需要长时间可靠运行的软件系统中,由于持续运行时间和任务响应速度的要求增加,工作组件在被探测到失效后将被冗余组件实时替换.但现有可靠性优化研究通常假设冷备份冗余在所有积极冗余组件失效后才使用.针对支持实时替换的混合冗余策略,对其冗余度优化分配进行研究.该策略不仅能够保障系统可靠性,而且能够保障系统性能,故选用实时可用性和任务完成效率两类约束条件,建立冗余配置代价最小化模型.基于马尔可夫链理论对可靠性及性能两类系统指标进行定量分析;采用数值计算方法对非线性的状态分析模型进行计算;改进二元组编码遗传算法对上述优化问题进行求解.采用实例对串并联系统中实时可用性及任务完成效率的分析进行了说明,并对优化冗余分配模型进行了验证.实验结果表明,在相同冗余度下,支持实时替换的混合冗余策略在任务完成效率方面优于传统的混合冗余策略.所以,在相同约束条件下不同混合冗余策略需要采用不同的冗余优化配置方案.  相似文献   

19.
Optimal multi-reservoir operation is a multi-objective problem in nature and some of its objectives are nonlinear, non-convex and multi-modal functions. There are a few areas of application of mathematical optimization models with a richer or more diverse history than in reservoir systems optimization. However, actual implementations remain limited or have not been sustained.Genetic Algorithms (GAs) are probabilistic search algorithms that are capable of solving a variety of complex multi-objective optimization problems, which may include non-linear, non-convex and multi-modal functions. GA is a population based global search method that can escape from local optima traps and find the global optima. However GAs have some drawbacks such as inaccuracy of the intensification process near the optimal set.In this paper, a new model called Self-Learning Genetic Algorithm (SLGA) is presented, which is an improved version of the SOM-Based Multi-Objective GA (SBMOGA) presented by Hakimi-Asiabar et al. (2009) [45]. The proposed model is used to derive optimal operating policies for a three-objective multi-reservoir system. SLGA is a new hybrid algorithm which uses Self-Organizing Map (SOM) and Variable Neighborhood Search (VNS) algorithms to add a memory to the GA and improve its local search accuracy. SOM is a neural network which is capable of learning and can improve the efficiency of data processing algorithms. The VNS algorithm can enhance the local search efficiency in the Evolutionary Algorithms (EAs).To evaluate the applicability and efficiency of the proposed methodology, it is used for developing optimal operating policies for the Karoon-Dez multi-reservoir system, which includes one-fifth of Iran's surface water resources. The objective functions of the problem are supplying water demands, generating hydropower energy and controlling water quality in downstream river.  相似文献   

20.
李卓  李引珍  李文霞 《计算机应用》2019,39(9):2765-2771
针对应急前期运输商自有车辆不足的实际背景,采用自有车辆和第三方租用车辆共同配送的运输模式,对混合车辆路径的组合优化问题进行研究。首先,考虑需求点和运输商的不同利益诉求,以系统满意度最大、系统配送时间和总成本最小为优化目标,建立带软时间窗的多目标混合车辆路径优化模型。其次,考虑NSGA-Ⅱ算法在求解该类问题时收敛性差和Pareto前沿分布不均匀的缺点,将蚁群算法的启发式策略和信息素正反馈机制用于生成子代种群,非支配排序策略模型用于指导算法的多目标择优过程,并引入变邻域下降搜索以扩大搜索空间,提出求解多目标的非支配排序蚁群算法以突破原有算法瓶颈。算例表明:构建的模型可对决策者在不同的情境下依据不同的优化目标选择合理的路径提供参考,提出的算法在求解不同规模的问题和不同分布类型的问题中均表现出较好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号