首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 531 毫秒
1.
为了进一步提高在Spark平台上的频繁模式增长(FP-Growth)算法执行效率,提出一种新的基于Spark的并行FP-Growth算法——BFPG。首先,从频繁模式树(FP-Tree)规模大小和分区计算量对F-List分组策略进行改进,保证每个分区负载总和近似相等;然后,通过创建列表P-List对数据集划分策略进行优化,减少遍历次数,降低时间复杂度。实验结果表明,BFPG算法提高了并行FP-Growth算法挖掘效率,且算法具有良好的扩展性。  相似文献   

2.
频繁项集挖掘FIM(Frequent Itemsets Mining)是关联规则挖掘算法的重要组成部分。而经典Apriori和FP-Growth算法在海量数据处理时面临内存占用、计算性能等方面的瓶颈。基于Hadoop云计算平台,提出适用大数据处理的频繁项集挖掘HBFP(High Balanced parallel FP-growth)算法,设计后缀模式转换的数据分割及均衡任务分组方案,使计算节点本地拥有计算所依赖的数据,实现不同节点相互独立的并行数据挖掘方法,并保证算法全局的负载均衡特性。实验数据表明,HBFP算法能均匀地将计算量分散至不同计算节点,并行且相互独立地进行FP-Growth挖掘过程,算法效率提高了约12%,算法全局稳定性及效率取得提升。  相似文献   

3.
针对大数据中的频繁项集挖掘问题,提出一种基于Spark框架的FP-Growth频繁项集并行挖掘算法。首先,根据垂直布局思想将数据按照事务标识符垂直排列,以此解决扫描整个数据集的缺陷。然后,通过FP-Growth算法构建频繁模式树,并生成频繁1-项集。接着,通过扫描垂直数据集来计算项集的支持度,从而识别出非频繁项,并将其从数据集中删除以降低数据尺寸。最后,通过迭代过程来生成频繁 -项集。在标准数据集上的实验结果表明,该算法能够有效挖掘出频繁项集,在执行时间方面具有很大的优越性。  相似文献   

4.
传统的频繁项集挖掘方法具有一定的局限性。Apriori算法需要重复扫描输入数据,导致很高的I/O负载,算法性能不高;Fp-growth算法需要在内存中建立Fp-tree并根据Fp-tree挖掘频繁项集,导致算法受到计算机的内存限制。在大数据时代,由于挖掘数据规模十分巨大,更加凸显这些传统算法的局限性。对此,一方面改进传统的频繁项集挖掘算法,另一方面基于Spark框架实现分布式频繁项集挖掘算法(FIMBS)。实验结果表明,该算法相比基于MapReduce框架的关联规则算法具有显著的优势。  相似文献   

5.
随着数据量的增长,如何快速有效发现频繁项集已成为挖掘关联规则的核心问题,而并行计算和闭频繁项集分别是一种处理大量数据直接有效的方法和频繁项集的无失真信息最小集合。分析一些经典闭频繁项集算法和并行关联规则算法及其不足,提出一种基于多核微机的并行闭频繁项集挖掘算法,提高了闭频繁项集挖掘的效率。  相似文献   

6.
信息系统产生的大量事务日志数据蕴含着潜在的伴随模式,伴随模式是指在时空上频繁共现的一组对象.由于传统的滑动窗口算法和FP-Growth算法只能调用单一线程进行计算,随着数据规模的扩张,会导致挖掘伴随模式的时间急剧增加.为此本文提出了一种基于Fork/Join并行技术的伴随模式挖掘框架,其能够实现从单线程到多线程的迁移,充分利用多核配置的加速性能.该框架由划定伴随数据集、频繁项集挖掘和关联规则挖掘三部分组成.首先,提出了基于Fork/Join的多核并行滑动窗口算法,以缩短从事务日志中划定伴随数据集的时间;然后,提出基于Fork/Join的多核并行FP-Growth算法,以并行地挖掘伴随数据集中的频繁项集;最后,引入支持度、置信度和提升度3个参数,对伴随模式中各对象间的关联规则进行挖掘.基于门禁刷卡数据的实验结果表明,相比传统算法,本文所提出的框架能够挖掘出更多的伴随模式,同时挖掘效率较高.  相似文献   

7.
Apriori算法是解决频繁项集挖掘最常用的算法之一,但多轮迭代扫描完整数据集的计算方式,严重影响算法效率且难以并行化处理。随着数据规模的持续增大,这一问题日益严重。针对这一问题,提出了一种基于项编码和Spark计算框架的Apriori并行化处理方法——IEBDA算法,利用项编码完整保存项集信息,在不重复扫描完整数据集的情况下完成频繁项集挖掘,同时利用Spark的广播变量实现并行化处理。与其他分布式Apriori算法在不同规模的数据集上进行性能比较,发现IEBDA算法从第一轮迭代后加速效果明显。结果表明,该算法可以提高大数据环境下的多轮迭代的频繁项集挖掘效率。  相似文献   

8.
为满足日益增长的海量数据挖掘需求,迫切需要设计一种能够在多台机器上运行的分布式关联规则挖掘算法。Apriori这种高度迭代算法在Hadoop平台上运行时每次迭代执行大量的磁盘I/O操作,大大影响并限制了算法的运行效率。本文利用Spark对分布式计算内置支持的特点,在Spark平台上设计并实现一种分布式关联规则挖掘算法,称为阶段式自适应挖掘算法(Staged Adaptive Apriori)。算法使用自适应的数据集部分处理的策略对频繁项集进行高效挖掘,在每次迭代前初步评估执行时间,并采用较为合适的方法来减少时间和空间的复杂性,是一种基于数据集性质的自适应关联规则挖掘算法。实验结果表明了算法的有效性。  相似文献   

9.
关联规则挖掘算法FP-Growth虽然效率比Apriori要快一个数量级,但存在频繁模式树可能过大而内存无法容纳和数据挖掘过程串行处理等两大缺点。提出一种分布式并行关联规则挖掘算法,该算法针对分布式应用数据架构,不需要产生全局FPtree,避免全局FP-tree可能过大而内存无法容纳的问题,算法在各个主要步骤上都实现了并行处理。算法测试结果和分析表明,与传统的关联规则挖掘算法FP-Growth相比,该算法通过多节点分布式并行处理显著提高了执行效率和处理能力。  相似文献   

10.
关联规则挖掘中最主要的工作是如何高效地挖掘频繁项集。目前在单机平台上,由于计算量大等原因,大数据集上的关联规则挖掘很难得到理想结果。在分析现有频繁项集挖掘算法的基础上,结合Eclat和dEclat挖掘算法优点,针对大数据集和片上多核共享内存计算环境,提出一种高效的并行频繁项集挖掘算法PEclat,算法实现了任务级并行挖掘频繁项集,并在大数据集上进行了多项测试。实验结果表明,无论数据稠密程度如何,该算法均能取得较好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号