首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper, a planar 2-DOF parallel manipulator with actuation redundancy is proposed and the optimal design considering kinematics and natural frequency is presented. The stiffness matrix and mass matrix are derived, and the structural dynamics is modeled. The natural frequency is obtained on the basis of dynamic model. Based on the kinematic performance, the range for link length is given. Then, considering the natural frequency, the geometry is optimized. The natural frequency is simulated and compared with the corresponding non-redundant parallel manipulator. The designed redundant parallel manipulator has desired kinematic performance and natural frequency and is incorporated into a 4-DOF hybrid machine tool.  相似文献   

2.
《Advanced Robotics》2013,27(4):303-317
Recently, applications of articulated manipulators have increased to include extreme environments such as underwater and space. Simulation systems to support the design and control of industrial robots have been developed in many laboratories, and some high-speed calculation methods for inverse dynamics analysis of manipulators with series connections have been proposed. This paper deals with the dynamic simulation and modelling of underwater articulated manipulators. The dynamics of the above manipulators are formulated to evaluate the influence of the added mass tensor, the added inertia tensor, and fluid drag, and the lift on each arm according to classical Newton-Euler mechanics. Moreover, by generalizing this model, we can discuss the dynamics of a manipulator with dual arms and simulate some constrained motion of an end-effector. As an example of inverse dynamics analysis, the force and moment of a nine degrees of freedom (d.o.f.) manipulator with dual arms are analysed. As an example of direct dynamics analysis, hybrid control of both the force and the position of a 6 d.o.f. manipulator is simulated.  相似文献   

3.
Underwater vehicles have opened a unique path to multifunctionality and environmental adaptability. However, inadequate studies have been conducted to investigate the dynamic principle and performance of underwater vehicles in real applications with complex external conditions. Here, we propose a type of combustion-enabled underwater vehicles that can perform stable high-speed motions under dynamic fluid environment. Experiments are conducted to test the kinematic performance. Numerical simulations are developed to investigate the fluid–solid interaction phenomenon, and theoretical modeling is derived to study the dynamic principle of the combustion actuation process. The experimental, numerical, and theoretical results are compared with satisfactory agreements. The underwater vehicles perform ~3.4 body-length distance within 0.2 s and a maximum speed of ~30 body-length per second in horizontal direction. Parametric studies are conducted to investigate the sensitivity of the key factors to the kinematic performance of the reported underwater vehicles. In the end, we report the hybrid combustion-enabled underwater vehicles (CUVs) that combined with propeller to realize continuous driving for multi-mode operations. The experimental, numerical, and theoretical results indicate that hybrid CUVs can achieve more flexible and controllable motion performance.  相似文献   

4.
Remotely operated underwater robotic vehicles (URVs) have been used for various tasks: inspection, recovery, construction, etc. With the increased utilization of remotely operated vehicles in subsea applications, the development of autonomous vehicles becomes highly desirable to enhance operator efficiency. However, engineering problems associated with the high density, nonuniform and unstructured seawater environment, and the nonlinear response of the vehicle make a high degree of autonomy difficult to achieve. The vehicles are usually equipped with mechanical manipulators that are utilized during the working mode. The accurate performance of the vehicle during the working mode can be achieved by controlling the vehicle and manipulator at the same time and compensating the end-effector error due to the vehicle motion. This article describes an adaptive control strategy for the coordinated control of an underwater vehicle and its robotic manipulator. The effectiveness of the control system is investigated by case study. The results show that the presented control system can provide the high performance of the vehicle and manipulator in the presence of unpredictable changes in the dynamics of the vehicle and its environment.  相似文献   

5.
Kinematic analysis is one of the key issues in the research domain of parallel kinematic manipulators. It includes inverse kinematics and forward kinematics. Contrary to a serial manipulator, the inverse kinematics of a parallel manipulator is usually simple and straightforward. However, forward kinematic mapping of a parallel manipulator involves highly coupled nonlinear equations. Therefore, it is more difficult to solve the forward kinematics problem of parallel robots. In this paper, a novel three degrees-of-freedom (DOFs) actuation redundant parallel manipulator is introduced. Different intelligent approaches, which include the Multilayer Perceptron (MLP) neural network, Radial Basis Functions (RBF) neural network, and Support Vector Machine (SVM), are applied to investigate the forward kinematic problem of the robot. Simulation is conducted and the accuracy of the models set up by the different methods is compared in detail. The advantages and the disadvantages of each method are analyzed. It is concluded that ν-SVM with a linear kernel function has the best performance to estimate the forward kinematic mapping of a parallel manipulator.  相似文献   

6.
This paper contributes to the design of a new table top size tri-actuated spatial parallel manipulator. The manipulator configuration is considered for its ability to provide a maximum achievable workspace freedom. A minimum of three legs with all the spherical joints is selected to make three SPS (Spherical-prismatic-spherical) kinematic chain configuration. The complexity of building a minimum constraint manipulator lies in the fact that it cannot stand on its own on three ball joints. To transform this into a workable mechanism, spherical joints are designed with internal stiffness and braking system such that the manipulator can withstand even external loads. A detailed design analysis is conducted for the customized ball joint with different inside actuation mechanisms. Manipulator working in the workspace is found smooth under a pre-loaded condition whereas magnetic actuation locks the joints at the destination point, thereby achieving both capabilities. The manipulator overall stiffness is then evaluated to make its use in micro‑meso scale applications.  相似文献   

7.
《Advanced Robotics》2013,27(2):255-275
This paper provides a viewpoint for kinematics for the whole arm of a serial-chain manipulator with 2-d.o.f. rotational joints. An in-depth understanding of the duality between a rigid link and a 2-d.o.f. joint allows us to derive simple and geometric equations describing the manipulator kinematics. The obtained kinematic equations are analyzed in two ways compared with the Frenet-Serret formula of a spatial curve which is utilized for a reference shape of the manipulator. One way is based on limit analysis where we increase the number of joints while the total length of the manipulator remains constant. The other way utilizes an extended mechanism through the link-joint duality. The information presented in this paper is useful for mechanism design dynamic analysis, control design and motion planning of the manipulators in whole-arm manipulation.  相似文献   

8.
陈伟海  满征  于守谦  王田苗 《机器人》2007,29(4):389-396
阐述了一种线驱动与常规串联驱动相结合的混合设计方法.这种设计方法融合了线驱动并联机构和模块化串联机构的优点,而且混合驱动机器人的工作空间大于完全线驱动机器人的工作空间.文章首先介绍了混合驱动机器人的机构设计,也就是机器人的肩关节采用模块化串联结构,而肘、腕关节采用线驱动结构.然后利用几何分析的方法来解机器人前向运动学问题.在分析驱动线长与关节角之间变换关系的基础上,分别利用速度法和关节角增量法来计算机器人逆向运动学解.最后,使用VC++实现混合驱动机器人对直线运动轨迹进行跟踪的仿真,从而证明了文章所描述的设计方法的正确性.  相似文献   

9.
10.
《Advanced Robotics》2013,27(1-2):113-143
The non-holonomic characteristic of a free-floating space robotic system is used to plan the path of the manipulator joints, by whose motion the base attitude and the inertial pose (the position and orientation with respect to the inertial frame) of the end-effector attain the desired values. First, the kinematic equations of a free-floating space robot are simplified and the system state variables are transformed to another form composed of base attitude and joint angles. Then, the joint trajectories are parameterized using sinusoidal functions, whose arguments are seven-order polynomials. Third, the planning problem is transformed to an optimization problem; the cost function, defined according to the accuracy requirements of system variables, is the function of the parameters to be determined. Finally, the Particle Swarm Optimization (PSO) algorithm is used to search the solutions of the parameters that determine the joint trajectories. The presented method meets three typical applications: (i) point-to-point maneuver of the end-effector without changing the base attitude, (ii) attitude maneuver of the base without changing the end-effector's pose and (iii) point-to-point maneuver of the end-effector with adjusting the base attitude synchronously. The simulation results of a spacecraft with a 6-d.o.f. manipulator verify the performance and the validity of the proposed method.  相似文献   

11.
A new three-limb, six-degree-of-freedom (DOF) parallel manipulator (PM), termed a selectively actuated PM (SA-PM), is proposed. The end-effector of the manipulator can produce 3-DOF spherical motion, 3-DOF translation, 3-DOF hybrid motion, or complete 6-DOF spatial motion, depending on the types of the actuation (rotary or linear) chosen for the actuators. The manipulator architecture completely decouples translation and rotation of the end-effector for individual control. The structure synthesis of SA-PM is achieved using the line geometry. Singularity analysis shows that the SA-PM is an isotropic translation PM when all the actuators are in linear mode. Because of the decoupled motion structure, a decomposition method is applied for both the displacement analysis and dimension optimization. With the index of maximal workspace satisfying given global conditioning requirements, the geometrical parameters are optimized. As a result, the translational workspace is a cube, and the orientation workspace is nearly unlimited.  相似文献   

12.
A parallel manipulator is a closed kinematic structure with the necessary rigidity to provide a high payload to self-weight ratio suitable for many applications in manufacturing, flight simulation systems, and medical robotics. Because of its closed structure, the kinematic control of such a mechanism is difficult. The inverse kinematics problem for such manipulators has a mathematical solution; however, the forward kinematics problem (FKP) is mathematically intractable. This work addresses the FKP and proposes a neural-network-based hybrid strategy that solves the problem to a desired level of accuracy, and can achieve the solution in real time. Two neural-network (NN) concepts using a modified form of multilayered perceptrons with backpropagation learning were implemented. The better performing concept was then combined with a standard Newton-Raphson numerical technique to yield a hybrid solution strategy. Simulation studies were carried out on a flight simulation syystem to check the validity o the approach. Accuracy of close to 0.01 mm and 0.01/spl deg/ in the position and orientation parameters was achieved in less than two iterations and 0.02 s of execution time for the proposed strategy.  相似文献   

13.
Parallel mechanisms (PMs) with two rotational degrees-of-freedom (DOF) and one translational DOF (2R1T) have gained much attention, in view of their good comprehensive performance in the field of machine tools. In this paper, a novel 2R1T 2UPU/SP PM is presented, and a 5-DOF hybrid serial-parallel manipulator is constructed on the basis of this novel PM. First, to better understand typical 2R1T PMs, a type synthesis method in virtue of the inner properties of PMs are investigated; in particular, the construction principles for the 2UPU/SP PM are introduced. Second, as the 2UPU/SP PM belongs to an over-constrained 2R1T PM, the constraint force and torque generated on the moving platform (MP) are analyzed in detail, and the rotational axes of the 2UPU/SP PM are obtained. Third, the kinematics of the 2UPU/SP PM are studied systematically, including position, velocity and acceleration analysis; based on the kinematic model, an inverse dynamic model is established using the virtual work principle method. The analysis of this PM shows that its kinematic and dynamic models are quite simple. To confirm the correctness of the kinematic and dynamic models, numerical simulations are performed. Next, the workspace is drawn using MATLAB and CAD softwares, which makes it possible to visualize it fully. Finally, the dimensional synthesis on the basis of the motion/force transmissibility is analyzed and relatively optimized physical dimensions are obtained. This study will enhance the research applications of PM and establish good theoretical foundations for the application of this novel manipulator.  相似文献   

14.
Driven by the requirements of the large-scale component assemblage for the docking platform, this paper proposes a novel one-translational-three-rotational (1T3R) parallel manipulator with an articulated travelling plate, which can provide high stiffness and good accuracy performances in the assemblage. The underlying architecture of this manipulator is briefly addressed with emphasis on the practical realization of the articulated travelling plate. On the basis of the kinematic analysis of the 1T3R parallel manipulator, its optimal design considering the force and motion transmissibility is carried out, in which the generalized virtual power transmissibility of this manipulator is defined. This paper aims at laying a solid theoretical and technical foundation for the prototype design and manufacture of the 1T3R parallel manipulator.  相似文献   

15.
This paper deals with the performance analysis of a 3-degree-of-freedom (3-DOF) planar parallel manipulator with actuation redundancy. Closed-form solutions are developed for both the inverse and direct kinematics about the redundant parallel manipulator. In performance analysis phase, the dexterity is analyzed, three kinds of singularities are investigated, and the stiffness is estimated. Compared with the corresponding non-redundant parallel manipulator with the redundant link removed, the redundantly actuated one has better dexterity, litter singular configurations and higher stiffness. The redundantly actuated parallel manipulator was applied to the design of a 4-DOF hybrid machine tool which also includes a feed worktable to demonstrate its applicability.  相似文献   

16.
We have presented a new actuation concept for human-friendly robot design, referred to as DM/sup 2/. The new concept of DM/sup 2/ was demonstrated on a two-degree-of-freedom prototype robot arm that we designed and built to validate our approach. The new actuation approach substantially reduces the impact loads associated with uncontrolled manipulator collision by relocating the major source of actuation effort from the joint to the base of the manipulator. The emerging field of human-centered robotics focuses on application such as medical robotics and service robotics, which require close interaction between robotic manipulation systems and human beings, including direct human-manipulator contact. As a result, this system must consider the requirements of safety. To achieve safety we must employ multiple strategies involving all aspects of manipulator design.  相似文献   

17.
In this paper, we propose a novel six degree-of-freedom positioning system. This mechanism is a tripod structure with inextensible limbs actuated at the base by two-dimensional linear stepper motors (other types of actuators may also be utilized). This manipulator has a closed-chain kinematic structure. Both the direct and the inverse kinematics of the manipulator are presented in detail. While the inverse kinematics are obtained in closed form, the direct kinematics can not be solved in closed form and an algorithm is provided for numerically computing the direct kinematic solution. A detailed dynamic model of the positioning system is also provided. The dynamics of the actuators (Sawyer motors) are also included in the dynamic modeling. The design of the tripod manipulator (TriM) included a kinematic optimization of the system parameters to maximize the manipulator workspace. The proposed manipulator achieves large range of motion in all the 6 degrees of freedom. Furthermore, high resolution and high speed motion may be achieved in all axes due to the actuators used and the direct-drive nature of the manipulator. This work was supported in part by NSF under grants ECS-9977693 and ECS-0501539. An earlier version of this paper was presented at the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, Oct. 2003.  相似文献   

18.
A new nonlinear disturbance observer-based tracking control scheme for an underwater manipulator is presented in this paper. This observer overcomes the disadvantages of existing disturbance observers, which are designed or analyzed by the linear system techniques. It can be applied in underwater manipulator systems for various purposes such as payload compensation, interaction effects compensation, underwater current or external disturbance compensation, and independent system control. The performance of the proposed tracking control scheme is demonstrated numerically by the payload compensation and interaction effects compensation for a two degrees of freedom vertical underwater manipulator.  相似文献   

19.
Robust damping control of mobile manipulators   总被引:6,自引:0,他引:6  
A novel robust control technique, robust damping control (RDC), is introduced. An RDC controller is further developed for the motion control of a mobile manipulator subject to kinematic constraints. The knowledge of dynamic parameters of the mobile manipulator is assumed to be completely unknown. The proposed RDC controller is capable of disturbance-rejection in the presence of unknown bounded disturbance, without requiring the knowledge of its bound. The stability of the closed-loop system is guaranteed. The controller has a simple structure and can be easily implemented in applications. Experimental tests on a 2-DOF robotic manipulator illustrate that the proposed control is significantly better than conventional robust control.  相似文献   

20.
《Advanced Robotics》2013,27(8):791-806
Performance of an electrohydraulic impedance controller, developed in the physical domain, for controlling the contact forces during robotic interaction tasks is analyzed in this paper. The impedance controller is capable of varying the mechanical impedance of the manipulator during an interaction task and thus controls the interaction force. An electrohydraulic servo actuator, appended to a 1-d.o.f. manipulator arm, acts as the controller in the physical domain. The controller performance depends on the physical parameters such as size of the actuator, bulk modulus of the oil, etc., of the hydraulic system. The influence of these physical parameters on the controller performance is analyzed through frequency analysis and acceptable ranges of values for these parameters are determined. Controller sensitivity, stability of the constrained manipulator system and its frequency response are analyzed theoretically and results are presented. The limitation of application of the controller for practical applications is also analyzed and the results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号