首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For uncertain time‐delay systems with mismatch disturbances, this paper presented an integral sliding mode control algorithm using output information only. An integral sliding surface is comprised of output signals and an auxiliary full‐order compensator. The designed output feedback sliding mode controller can locally satisfy the reaching and sliding condition and maintain the system on the sliding surface from the initial moment. Since the system is in the sliding mode and two specific algebraic Riccati inequalities are established, the proposed algorithm can guarantee the stability of the closed‐loop system and satisfy the property of disturbance attenuation. Moreover, the design parameters of the controller and compensator can be simultaneously determined by solutions to two algebraic Riccati inequalities. Finally, a numerical example illustrates the applicability of the proposed scheme. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

2.
A passivity‐based sliding mode control for a class of second‐order nonlinear systems with matched disturbances is proposed in this paper. Firstly, a nonlinear sliding surface is designed using feedback passification, in which the passivity is employed to guarantee the closed‐loop system's stability. The passivity‐based controller comprising a discontinuous term guarantees globally asymptotical convergence to the sliding surface. A sliding mode‐based control law that satisfies the reaching and sliding condition is also developed. Moreover, the passivity‐based sliding mode observer is also developed to effectively estimate the system states. Compared with conventional sliding mode control, the proposed control scheme has a shorter reaching time; and hence, the system performance is less affected by disturbances, thus eliminating the need to increase the control input gain. Finally, simulation results demonstrate the validity of the proposed method.  相似文献   

3.
It is proved in the paper that practically all known higher‐order sliding controllers can be combined with recently developed 2‐sliding‐mode‐based differentiators yielding universal output‐feedback Single‐Input‐Single‐Output (SISO) controllers. These controllers can be applied at least locally, whenever the system relative degree is known. The convergence is global, provided the system relative degree is permanent and few boundedness restrictions hold. No detailed mathematical model of the system is needed. The proposed output‐feedback controller provides for the exact finite‐time‐convergent output tracking of real‐time‐given smooth signals if the output measurements are exact. Otherwise the tracking accuracy is proportional to the magnitude of the sampling noise. The control may be made arbitrarily smooth, thereby removing the chattering effect. The theoretical results are illustrated by computer simulation.  相似文献   

4.
This paper develops an output feedback sliding mode controller for multi‐input multi‐output (MIMO) systems of any relative degree. A minimal set of outputs and output derivatives are identified to determine an augmented system which is relative degree 1, and a robust sliding mode differentiator is presented as the means to construct the extended output signal. It is shown that the transmission zeroes of the original plant appear directly in the reduced order sliding mode dynamics relating to the augmented system. A super twisting control algorithm is shown to provide robust control performance. Simulation results for a rationalized helicopter model taken from the literature are used to demonstrate the attraction of the approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
We propose an output feedback second‐order sliding mode controller to stabilize the cart on a beam system. A second‐order sliding mode controller is designed using a Lyapunov function‐based switching surface and finite‐time controllers, while the state estimator is designed based on the Luenberger‐like observer. The proposed observer extends the applicability of Luenberger‐like observer to nonlinear systems that are not input–output linearizable, but can be approximately input–output linearized. The approximation is based on the physical property of the system, wherein certain terms in the total energy are neglected. Extensive numerical simulations validate the robustness of the proposed controller to parametric uncertainties using estimated states. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This note addresses the multi‐input second‐order sliding mode control design for a class of nonlinear multivariable uncertain dynamics. Among the most important peculiarities of the considered control problem, the considered sliding vector variable has a uniform vector relative degree [2,2, … ,2] with respect to the vector control variable, and only the sign of the sliding vector and of its derivative are available for feedback. Additionally, the symmetric part of the state‐dependent control matrix is supposed to be positive definite. Under some further mild restrictions on the uncertain system's dynamics, a control algorithm that realizes a multi‐input version of the ‘twisting’ second‐order sliding mode control algorithm is suggested. Simple controller tuning conditions are derived by means of a constructive Lyapunov analysis, which demonstrates that the suggested control algorithm guarantees the semiglobal asymptotic convergence to the sliding manifold. Simulation results, which confirm the good performance of the proposed scheme and investigate the actual accuracy obtained under the discrete‐time implementation effects, are given. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a control design algorithm that combines backstepping and high‐order sliding modes. It is known that backstepping can achieve asymptotic stability for nonlinear systems in strict‐feedback form in spite of parametric uncertainties. Nevertheless, when external perturbations are also present, only practical stability can be ensured. For the same aforementioned perturbed conditions, the combined design presented in this paper can achieve finite‐time exact tracking/regulation. At the same time, the semi‐global or global stability obtained through backstepping is preserved, and the gains of the high‐order sliding modes controller can be reduced with respect to its direct application. The design is based on recently reported combined designs that are based on the idea of virtual controls, which can contain terms based on high‐order sliding modes algorithms. The proposal also extends previous results to the multiple‐input–multiple‐output case. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A sliding mode control algorithm using output information only is developed in this paper for a linear system with mismatched disturbance. The nominal system is allowed to be nonminimum phase. A scheme designed to combine the output‐dependent integral sliding surface with a reduced‐order observer is proposed. Utilizing an H control analytical technique, once the system is in the sliding mode, the proposed algorithm can guarantee robust stabilization and sustain the nature of performing disturbance attenuation when the solution to one algebraic Riccati inequality can be found. A controller is designed to satisfy the reaching and sliding condition in line with the reduced‐order observer. Finally, a numerical example is explained to show the applicability of the proposed scheme. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
In this paper, an ?? sliding mode control (SMC) problem is studied for a class of discrete‐time nonlinear stochastic systems with multiple data packet losses. The phenomenon of data packet losses, which is assumed to occur in a random way, is taken into consideration in the process of data transmission through both the state‐feedback loop and the measurement output. The probability for the data packet loss for each individual state variable is governed by a corresponding individual random variable satisfying a certain probabilistic distribution over the interval [0 1]. The discrete‐time system considered is also subject to norm‐bounded parameter uncertainties and external nonlinear disturbances, which enter the system state equation in both matched and unmatched ways. A novel stochastic discrete‐time switching function is proposed to facilitate the sliding mode controller design. Sufficient conditions are derived by means of the linear matrix inequality (LMI) approach. It is shown that the system dynamics in the specified sliding surface is exponentially stable in the mean square with a prescribed ?? noise attenuation level if an LMI with an equality constraint is feasible. A discrete‐time SMC controller is designed capable of guaranteeing the discrete‐time sliding mode reaching condition of the specified sliding surface with probability 1. Finally, a simulation example is given to show the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a class of interconnected systems with mismatched uncertainties is considered. A sliding surface is proposed in an augmented space formed by the system output and the compensator state variables, and the stability of the corresponding sliding mode is analysed. A robust decentralised reduced-order output feedback sliding mode controller is then designed to drive the system to the composite sliding surface and maintain a sliding motion on it thereafter. The proposed approach allows both the isolated nominal subsystem and the nominal interconnected system to be nonminimum phase. The known interconnections and the bounds on the uncertain interconnections are fully used in the control design to reduce conservatism.  相似文献   

11.
This paper proposes a full‐order sliding‐mode control for rigid robotic manipulators. The output signals of the proposed controller are continuous. Therefore, the controller can be directly applied in practice. A time‐varying gain is constructed to regulate the gain of the signum function in the sliding‐mode control so as to avoid the overestimation of the upper‐bounds of the uncertainties in the systems and reduce the waste of the control power. The chattering is attenuated by using a novel full‐order sliding manifold and establishing a novel ideal sliding motion. The proposed method is robust to the load disturbance and unmodeled parameters, especially to the unknown portion in the control matrix. Simulation results validate the proposed methods.  相似文献   

12.
针对离散时间系统,提出了一种基于多速率采样输出反馈和幂次函数趋近律的离散滑模控制方法;理论分析表明,通过引入幂次函数可消除离散滑模控制系统的抖振;采用多速率采样技术,运用不同采样速率下的系统输出值表示系统状态,实现了仅用系统输入输出采样值完成离散滑模控制器的设计,减轻了控制系统设计的复杂性;仿真结果表明,控制器的输出、切换函数、系统的输出均不存在抖振现象,而且控制系统表现出了良好的动态特性。  相似文献   

13.
A switched implementation of average dynamic output feedback laws trough a ∑‐Δ‐modulator, widely known in the classic communications and analog signal encoding literature, not only frees the sliding mode control approach from state measurements and the corresponding synthesis of sliding surfaces in the plant's state space, but it also allows to effectively transfer all desired closed loop features of an uniformly bounded, continuous, average output feedback controller design into the more restrictive discrete‐valued (ON‐OFF) control framework of a switched system. The proposed approach is here used for the input‐output sliding mode stabilization of the “boost” DC‐to‐DC converter. This is achieved by means of a well known passivity based controller but any other output feedback design would have served our purposes. This emphasizes the flexibility of the proposed sliding mode control design implementation through ∑‐Δ‐modulators.  相似文献   

14.
The finite‐time formation control for multiple nonholonomic wheeled mobile robots with a leader‐following structure is studied. Different from the existing results, the considered mobile robot has the following features: (i) a higher‐order dynamic model, (ii) the robot's velocities cannot be measured, and (iii) there are external disturbances. To solve the problem, a finite‐time consensus formation control algorithm via output feedback is explicitly given. At the first step, some finite‐time convergent observers are skillfully constructed to estimate both the unknown velocity information and the disturbance in finite time by imposing certain assumptions on the disturbances. Then, on the basis of the integral sliding‐mode control method, a disturbance observer‐based finite‐time output feedback controller is developed. Rigorous proof shows that the finite‐time formation can be achieved in finite time. An example is finally given to verify the efficiency of the proposed method.  相似文献   

15.
This paper addresses the problem of designing a dynamic output feedback sliding mode control algorithm for linear MIMO systems with mismatched parameter uncertainties along with disturbances and matched nonlinear perturbations. Once the system is in the sliding mode, the proposed output‐dependent integral sliding surface can robustly stabilize the closed‐loop system and obtain the desired system performance. Two types of mismatched disturbances are considered and their effects on the sliding mode are explored. By introducing an additional dynamics into the controller design, the developed control law can guarantee that the system globally reaches and is maintained on the sliding surface in finite time. Finally, the feasibility of the proposed method is illustrated by numerical examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a fast terminal sliding‐mode tracking control for a class of uncertain nonlinear systems with unknown parameters and system states combined with time‐varying disturbances. Fast terminal sliding‐mode finite‐time tracking systems based on differential evolution algorithms incorporate an integral chain differentiator (ICD) to feedback systems for the estimation of the unknown system states. The differential evolution optimization algorithm using ICD is also applied to a tracking controller, which provides unknown parametric estimation in the limitation of unknown system states for trajectory tracking. The ICD in the tracking systems strengthens the tracking controller robustness for the disturbances by filtering noises. As a powerful finite‐time control effort, the fast terminal sliding‐mode tracking control guarantees that all tracking errors rapidly converge to the origin. The effectiveness of the proposed approach is verified via simulations, and the results exhibit high‐precision output tracking performance in uncertain nonlinear systems.  相似文献   

17.
This work considers the sliding mode control problem of a class of discrete‐time uncertain switched systems subject to detecting‐delay on mode signals, which may result in the asynchronous phenomenon between the controller and the switched system. Since the mode information of the controlled system is not available for the controller in time, a mode‐independent sliding surface will be introduced, by which an asynchronous sliding mode controller is designed, whose control gain and robust parameter will be changing according to the controller mode. In the analysis on the stability of the closed‐loop control system and the reachability of the specified sliding surface, the asynchronous characteristics are detailedly investigated. It is shown that the Lyapunov function may be not always decreasing along the state trajectories during the unmatched interval of controller modes and system modes. Nevertheless, it is proven that the state trajectories can be driven into a sliding region around the specified sliding surface in finite time. Finally, some numerical simulation results are provided.  相似文献   

18.
This paper presents a new approach for sliding‐mode control of discrete‐time systems using the reaching law approach together with periodic output feedback technique. This method does not need the system states for feedback as it makes use of only the output samples for designing the controller. Thus, this methodology is more practical and easy to implement. A numerical example is presented to illustrate the design technique.  相似文献   

19.
High‐order sliding mode control techniques are proposed for uncertain nonlinear SISO systems with bounded uncertainties based on two different terminal sliding mode approaches. The tracking error of the output converges to zero in finite time by designing a terminal sliding mode controller. In addition, the adaptive control method is employed to identify bounded uncertainties for eliminating the requirement of boundaries needed in the conventional design. The controllers are derived using Lyapunov theory, so the stability of the closed‐loop system is guaranteed. In the first technique, the developed procedure removes the reaching phase of sliding mode and realizes global robustness. The proposed algorithms ensure establishment of high‐order sliding mode. An illustrative example of a car control demonstrates effectiveness of the presented designs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, observer‐based sliding mode control is considered for networked control systems subject to quantization, in which packet dropout may happen when the measurement output is transmitted from the sensor to the controller. Firstly, a compensating scheme is proposed to deal with the effect of packet loss modelled as a Bernoulli process. Then, by means of available output information and state observer, the desirable sliding mode controller is designed. Furthermore, both the reachability and the stochastic stability of sliding mode dynamics can be attained and the corresponding sufficient conditions are derived. Finally, numerical simulation results are provided to illustrate the proposed control law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号