首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Cloud manufacturing is becoming an increasingly popular enterprise model in which computing resources are made available on-demand to the user as needed. Cloud manufacturing aims at providing low-cost, resource-sharing and effective coordination. In this study, we present a genetic algorithm (GA) based resource constraint project scheduling, incorporating a number of new ideas (enhancements and local search) for solving computing resources allocation problems in a cloud manufacturing system. A newly generated offspring may not be feasible due to task precedence and resource availability constraints. Conflict resolutions and enhancements are performed on newly generated offsprings after crossover or mutation. The local search can exploit the neighborhood of solutions to find better schedules. Due to its complex characteristics, computing resources allocation in a cloud manufacturing system is NP-hard. Computational results show that the proposed GA can rapidly provide a good quality schedule that can optimally allocate computing resources and satisfy users’ demands.  相似文献   

2.
Multi-objective job shop scheduling (MOJSS) problems can be found in various application areas. The efficient solution of MOJSS problems has received continuous attention. In this research, a new meta-heuristic algorithm, namely the Intelligent Water Drops (IWD) algorithm is customized for solving the MOJSS problem. The optimization objective of MOJSS in this research is to find the best compromising solutions (Pareto non-dominance set) considering multiple criteria, namely makespan, tardiness and mean flow time of the schedules. MOJSS-IWD, which is a modified version of the original IWD algorithm, is proposed to solve the MOJSS problem. A scoring function which gives each schedule a score based on its multiple criteria values is embedded into the MOJSS-IWD’s local search process. Experimental evaluation shows that the customized IWD algorithm can identify the Pareto non-dominance schedules efficiently.  相似文献   

3.
The paper presents a population-based algorithm for computing approximations of the efficient solution set for the linear assignment problem with two objectives. This is a multiobjective metaheuristic based on the intensive use of three operators – a local search, a crossover and a path-relinking – performed on a population composed only of elite solutions. The initial population is a set of feasible solutions, where each solution is one optimal assignment for an appropriate weighted sum of two objectives. Genetic information is derived from the elite solutions, providing a useful genetic heritage to be exploited by crossover operators. An upper bound set, defined in the objective space, provides one acceptable limit for performing a local search. Results reported using referenced data sets have shown that the heuristic is able to quickly find a very good approximation of the efficient frontier, even in situation of heterogeneity of objective functions. In addition, this heuristic has two main advantages. It is based on simple easy-to-implement principles, and it does not need a parameter tuning phase.  相似文献   

4.
This paper presents a local search, based on a new neighborhood for the job‐shop scheduling problem, and its application within a biased random‐key genetic algorithm. Schedules are constructed by decoding the chromosome supplied by the genetic algorithm with a procedure that generates active schedules. After an initial schedule is obtained, a local search heuristic, based on an extension of the 1956 graphical method of Akers, is applied to improve the solution. The new heuristic is tested on a set of 205 standard instances taken from the job‐shop scheduling literature and compared with results obtained by other approaches. The new algorithm improved the best‐known solution values for 57 instances.  相似文献   

5.
《Ergonomics》2012,55(4):543-560
Job rotation is one method that is sometimes used to reduce exposure to strenuous materials handling; however, developing effective rotation schedules can be complex in even moderate sized facilities. The purpose of this research is to develop methods of incorporating safety criteria into scheduling algorithms to produce job rotation schedules that reduce the potential for injury. Integer programming and a genetic algorithm were used to construct job rotation schedules. Schedules were comprised of lifting tasks whose potential for causing injury was assessed with the Job Severity Index. Each method was used to design four job rotation schedules that met specified safety criteria in a working environment where the object weight, horizontal distance and repetition rate varied over time. Each rotation was assigned to a specific gender/lifting capacity group. Five versions of the integer programming search method were applied to this problem. Each version generated one job rotation schedule. The genetic algorithm model was able to create a population of 437 feasible solutions to the rotation problem. Utilizing cluster analysis, a rule set was derived from the genetic algorithm generated solutions. These rules provided guidelines for designing safe job rotation schedules without the use of a computer. The advantages and limitations of these approaches in developing administrative controls for the prevention of back injury are discussed.  相似文献   

6.
Job rotation is one method that is sometimes used to reduce exposure to strenuous materials handling; however, developing effective rotation schedules can be complex in even moderate sized facilities. The purpose of this research is to develop methods of incorporating safety criteria into scheduling algorithms to produce job rotation schedules that reduce the potential for injury. Integer programming and a genetic algorithm were used to construct job rotation schedules. Schedules were comprised of lifting tasks whose potential for causing injury was assessed with the Job Severity Index. Each method was used to design four job rotation schedules that met specified safety criteria in a working environment where the object weight, horizontal distance and repetition rate varied over time. Each rotation was assigned to a specific gender/lifting capacity group. Five versions of the integer programming search method were applied to this problem. Each version generated one job rotation schedule. The genetic algorithm model was able to create a population of 437 feasible solutions to the rotation problem. Utilizing cluster analysis, a rule set was derived from the genetic algorithm generated solutions. These rules provided guidelines for designing safe job rotation schedules without the use of a computer. The advantages and limitations of these approaches in developing administrative controls for the prevention of back injury are discussed.  相似文献   

7.
置换表示方法求解多卫星多地面站调度问题   总被引:1,自引:0,他引:1  
针对多卫星成像和多地面站数传并存的对地成像调度问题,从置换空间到调度解空间的映射方法和置换空间的搜索算法两方面进行了研究.提出了一种数传时间窗优先的置换序列映射算法,并证明该映射算法可以将置换序列映射到调度解空间上的最优解.提出了一种遗传随机搜索算法,基于有记忆随机邻域搜索,在置换空间上进行搜索.仿真计算表明,随机邻域搜索可以增强遗传算法的局部搜索能力,搜索结果平均获得了4.64%的改进.  相似文献   

8.
基金项目管理中,专家分配问题的研究具有很现实的意义。在解决专家分配问题上做过一些基础性的工作,提出了使用遗传算法及一种信息素指导变异的新算法求解该问题。实验证明,遗传算法是一种可行的途径,并且信息素指导下的启发式变异操作,可以加速算法向最优解搜索。但是,这两种方法都存在局部搜索能力差的问题,在算法运行的中后期会出现大量的冗余迭代。鉴于此,提出一种信息素指导下的自适应变异方法求解专家分配问题。实验证明,新算法具有更强的收敛能力和局部搜索能力。  相似文献   

9.
By using the notion of elite pool, this paper presents an effective asexual genetic algorithm for solving the job shop scheduling problem. Based on mutation operations, the algorithm selectively picks the solution with the highest quality from the pool and after its modification, it can replace the solution with the lowest quality with such a modified solution. The elite pool is initially filled with a number of non-delay schedules, and then, in each iteration, the best solution of the elite pool is removed and mutated in a biased fashion through running a limited tabu search procedure. A decision strategy which balances exploitation versus exploration determines (i) whether any intermediate solution along the run of tabu search should join the elite pool, and (ii) whether upon joining a new solution to the pool, the worst solution should leave the pool. The genetic algorithm procedure is repeated until either a time limit is reached or the elite pool becomes empty. The results of extensive computational experiments on the benchmark instances indicate that the success of the procedure significantly depends on the employed mechanism of updating the elite pool. In these experiments, the optimal value of the well-known 10 × 10 instance, ft10, is obtained in 0.06 s. Moreover, for larger problems, solutions with the precision of less than one percent from the best known solutions are achieved within several seconds.  相似文献   

10.
Job shop scheduling problem is a typical NP-hard problem. To solve the job shop scheduling problem more effectively, some genetic operators were designed in this paper. In order to increase the diversity of the population, a mixed selection operator based on the fitness value and the concentration value was given. To make full use of the characteristics of the problem itself, new crossover operator based on the machine and mutation operator based on the critical path were specifically designed. To find the critical path, a new algorithm to find the critical path from schedule was presented. Furthermore, a local search operator was designed, which can improve the local search ability of GA greatly. Based on all these, a hybrid genetic algorithm was proposed and its convergence was proved. The computer simulations were made on a set of benchmark problems and the results demonstrated the effectiveness of the proposed algorithm.  相似文献   

11.
并行机间歇过程生产调度的遗传局部搜索算法   总被引:5,自引:0,他引:5  
苏生  战德臣  徐晓飞 《软件学报》2006,17(12):2589-2600
研究了一类集成分批的并行机间歇过程调度问题(parallel machine batch process scheduling problem,简称PBPSP),将此问题转化为固定费用运输问题(6xed charge transportation problem,简称FCTP)后,提出了具有集中邻域搜索机制和局部最优逃逸机制的遗传局部搜索算法(genetic local search algorithm,简称GLSA).GLSA算法用先根遍历边排列模式编码生成树解,具有高效的子树补充式单点交叉操作.将基于网络单纯型方法的邻域搜索作为变异算子,并提出了连续随机节点邻域搜索的集中邻域搜索策略以及随机旋转变异与全局邻域搜索相结合的局部最优逃逸策略,极大地强化了遗传局部搜索算法的全局寻优能力.实验表明:GLSA算法获得的解质量优于基于排列编码的遗传算法和基于矩阵编码的遗传算法,得到了所有Benchmark问题的最优解,且具有高鲁棒性.针对一定规模的FCTP问题,GLSA算法比Tabu启发式搜索算法具有更高的获得最优解几率.  相似文献   

12.
Estimation of distribution algorithms sample new solutions (offspring) from a probability model which characterizes the distribution of promising solutions in the search space at each generation. The location information of solutions found so far (i.e., the actual positions of these solutions in the search space) is not directly used for generating offspring in most existing estimation of distribution algorithms. This paper introduces a new operator, called guided mutation. Guided mutation generates offspring through combination of global statistical information and the location information of solutions found so far. An evolutionary algorithm with guided mutation (EA/G) for the maximum clique problem is proposed in this paper. Besides guided mutation, EA/G adopts a strategy for searching different search areas in different search phases. Marchiori's heuristic is applied to each new solution to produce a maximal clique in EA/G. Experimental results show that EA/G outperforms the heuristic genetic algorithm of Marchiori (the best evolutionary algorithm reported so far) and a MIMIC algorithm on DIMACS benchmark graphs.  相似文献   

13.
The capacitated clustering problem (CCP) is the problem in which a given set of weighted objects is to be partitioned into clusters so that the total weight of objects in each cluster is less than a given value (cluster ‘capacity’). The objective is to minimize the total scatter of objects from the ‘centre’ of the cluster to which they have been allocated. A simple constructive heuristic, a R-interchange generation mechanism, a hybrid simulated annealing (SA) and tabu search (TS) algorithm which has computationally desirable features using a new non-monotonic cooling schedule, are developed. A classification of the existing SA cooling schedules is presented. The effects on the final solution quality of the initial solutions, the cooling schedule parameters and the neighbourhood search strategies are investigated. Computational results on randomly generated problems with size ranging from 50 to 100 customers indicate that the hybrid SA/TS algorithm out-performs previous simulated annealing algorithms, a simple tabu search and local descent algorithms.  相似文献   

14.
The job-shop scheduling problem with operators is a very interesting problem that generalizes the classic job-shop problem in such a way that an operation must be algorithm to solve this problem considering makespan minimization. The genetic algorithm uses permutations with repetition to encode chromosomes and a schedule generation scheme, termed OG&T, as decoding algorithm. This combination guaranties that at least one of the chromosomes represents and optimal schedule and, at the samhat machines and operators are idle while an operation is available to be processed. To improve the quality of the schedules for large instances, we use Lamarckian evolution and modify the OG&T algorithm to further reduce the idle time of the machines and operators, in this case at the risk of leaving all optimal schedules out of the search space. We conducted a large experimental study showing that these improvements allow the genetic algorithm to reach high quality solutions in very short time, and so it is quite competitive with the current state-of-the-art methods.  相似文献   

15.
This paper proposes a three-phase algorithm (TPA) for the flowshop scheduling problem with blocking (BFSP) to minimize makespan. In the first phase, the blocking nature of BFSP is exploited to develop a priority rule that creates a sequence of jobs. Using this as the initial sequence and a variant of the NEH-insert procedure, the second phase generates an approximate solution to the problem. Then, utilizing a modified simulated annealing algorithm incorporated with a local search procedure, the schedule generated in the second phase is improved in the third phase. A pruning procedure that helps evaluate most solutions without calculating their complete makespan values is introduced in the local search to further reduce the computational time needed to solve the problem. Results of the computational experiments with Taillard's benchmark problem instances show that the proposed TPA algorithm is relatively more effective and efficient in minimizing makespan for the BFSP than the state-of-the-art procedures. Utilizing these results, 53 out of 60 new tighter upper bounds have been found for large-sized Taillard's benchmark problem instances.  相似文献   

16.
The post enrolment course timetabling problem (PECTP) is one type of university course timetabling problems, in which a set of events has to be scheduled in time slots and located in suitable rooms according to the student enrolment data. The PECTP is an NP-hard combinatorial optimisation problem and hence is very difficult to solve to optimality. This paper proposes a hybrid approach to solve the PECTP in two phases. In the first phase, a guided search genetic algorithm is applied to solve the PECTP. This guided search genetic algorithm, integrates a guided search strategy and some local search techniques, where the guided search strategy uses a data structure that stores useful information extracted from previous good individuals to guide the generation of offspring into the population and the local search techniques are used to improve the quality of individuals. In the second phase, a tabu search heuristic is further used on the best solution obtained by the first phase to improve the optimality of the solution if possible. The proposed hybrid approach is tested on a set of benchmark PECTPs taken from the international timetabling competition in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed hybrid approach is able to produce promising results for the test PECTPs.  相似文献   

17.
Efficient task scheduling on heterogeneous distributed computing systems (HeDCSs) requires the consideration of the heterogeneity of processors and the inter-processor communication. This paper presents a two-phase algorithm, called H2GS, for task scheduling on HeDCSs. The first phase implements a heuristic list-based algorithm, called LDCP, to generate a high quality schedule. In the second phase, the LDCP-generated schedule is injected into the initial population of a customized genetic algorithm, called GAS, which proceeds to evolve shorter schedules. GAS employs a simple genome composed of a two-dimensional chromosome. A mapping procedure is developed which maps every possible genome to a valid schedule. Moreover, GAS uses customized operators that are designed for the scheduling problem to enable an efficient stochastic search. The performance of each phase of H2GS is compared to two leading scheduling algorithms, and H2GS outperforms both algorithms. The improvement in performance obtained by H2GS increases as the inter-task communication cost increases.  相似文献   

18.
宋存利  时维国 《信息与控制》2012,41(2):193-196,209
针对车间调度问题,提出了一种2阶段混合粒了群算法(TS-HPSO).该算法在第1阶段为每个粒子设置较大的惯性系数w,同时去掉了粒子的社会学习能力,从而保证每个微粒在局部范围内充分搜索.第2阶段的混合粒子群算法以第1阶段每个粒子找到的最好解作为初始解,同时以遗传算法中的变异操作保证粒了多样性;为保证算法的寻优能力,对全局gbest进行贪婪邻域搜索.计算结果证明了本算法的有效性.  相似文献   

19.
Traditionally, the resource-constrained project scheduling problem (RCPSP) is modeled as a static and deterministic problem and is solved with the objective of makespan minimization. However, many uncertainties, such as unpredictable increases in processing times caused by rework or supplier delays, random transportation and/or setup, may render the proposed solution obsolete. In this paper, we present a two-stage algorithm for robust resource-constrained project scheduling. The first stage of the algorithm solves the RCPSP for minimizing the makespan only using a priority-rule-based heuristic, namely an enhanced multi-pass random-biased serial schedule generation scheme. The problem is then similarly solved for maximizing the schedule robustness while considering the makespan obtained in the first stage as an acceptance threshold. Selection of the best schedule in this phase is based on one out of 12 alternative robustness predictive indicators formulated for the maximization purpose. Extensive simulation testing of the generated schedules provides strong evidence of the benefits of considering robustness of the schedules in addition to their makespans. For illustration purposes, for 10 problems from the well-known standard set J30, both robust and non-robust schedules are executed with a 10% duration increase that is applied to the same randomly picked 20% of the project activities. Over 1000 iterations per instance problem, the robust schedules display a shorter makespan in 55% of the times while the non-robust schedules are shown to be the best performing ones in only 6% of the times.  相似文献   

20.
This study proposes a method of inequality-based multiobjective genetic algorithm (MMGA) to solve the aircraft routing problem. The proposed algorithm includes the following features: 1) a method of inequality to confine a genetic algorithm to search a Pareto optimal set in regions of interest with little computing effort; 2) an improved rank-based fitness assignment method to significantly increase the speed of fitness evaluation; and 3) a repairing strategy to relax the infeasible flight schedules to help reduce violations of solutions. The MMGA is successfully applied to solve the aircraft routing problems in a local airline company.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号