首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
YOLOv4-Tiny目标检测网络算法存在参数多和计算量大等问题,无法部署在资源有限的平台上。提出一种基于GhostNet残差结构的主干轻量级目标检测网络算法YOLO-GhostNet。该算法采用GhostNet结构将普通卷积分成两步,即使用较少的卷积核生成一部分特征图,对生成的特征图通过简单计算获得另一部分特征图,并将两组特征图进行拼接,以减少计算所需资源与参数量。通过GhostNet构建残差结构的YOLO-GhostNet算法在经过批量归一化层优化后模型尺寸只有2.18 MB,较YOLOv4-Tiny算法模型尺寸减小90%。YOLO-GhostNet算法在GPU加速环境下平均处理图片速度比YOLOv4-Tiny算法提高24%,CPU处理速度比YOLOv4-Tiny加快56%。实验结果表明,该算法在饮料测试集中的平均精确度均值达到79.43%,相比YOLOv4-Tiny算法,其在精度无损失情况下能够大幅降低网络计算量和参数量,同时加快推理速度,更适合部署于资源算力不足的嵌入式设备。  相似文献   

2.
无人机设备算力低下,深度模型计算量过大不适合直接部署,航拍图像目标小并且密集,模型对目标识别分类效果也不佳。为了提高深度模型航拍目标检测的精度和速度,降低计算量。对YOLOv3-SPP模型进行改进,将GIoU代替平方和用作定位损失,提高定位精度。提出了一种数据集优化和数据增强方法。再针对特定类别按照权值进行采样处理均衡化类别数量。随机组合不同场景样本组成批训练,提高模型训练效率和检测鲁棒性。再对模型进行压缩,在BN层添加缩放因子进行稀疏训练和通道剪枝的基础上,通过缩放因子衡量模型残差层重要性,修剪不重要残差,进一步减小前向推理层数和参数。实验表明,模型参数量减小了95.7%,模型大小减小95.82%,同等算力下模型推理速度提高为原来3倍。且精度和速度均高于最新YOLOv5系列轻量模型。  相似文献   

3.
为更高效利用变电站巡检机器人开展电力巡检工作,满足电力行业发展对智能化巡检的需求,研究了面向电力巡检机器人的电力设备状态检测算法。首先,根据深度网络部署硬件芯片应用情况与性能对比,选择海思Hi3559A芯片作为算法移植的嵌入式平台。然后综合考虑各种检测算法的精度与速度,选用YOLOv3算法作为设备状态检测的基本判别模型。为了提升检测算法速度并减少模型体积,开展模型压缩算法及轻量型YOLOv3模型设计研究,分别提出了改进的小型化YOLOv3模型和基于通道剪枝与层剪枝结合的模型压缩方法,提高模型上下层的语义信息及剪枝后模型的精度保持。根据测试结果选择最优的模型在机器人前端部署,提出的轻量化YOLOv3模型很好地保持了设备目标与异物检测的精度,检测速度提升了4倍。  相似文献   

4.
YOLOv3目标检测算法检测精度高,检测速度快,能够实现对交通标志的实时检测。但由于YOLOv3模型要求设备具有较强的运算能力及较大的内存,难以直接部署在车辆等资源受限平台上。针对此问题,提出了一种Strong Tiny-YOLOv3目标检测模型,该模型通过引入FireModule层进行通道变换,在减小模型参数的同时能够加深模型深度。同时,模型在FireModule层之间加入short-cut来增强网络的特征提取能力。实验结果表明,模型在保持较高检测精度的前提下,能够极大减小YOLOv3模型对设备的依赖。与Tiny-YOLOv3模型相比,Strong Tiny-YOLOv3模型的参数量减少了87.3%,实际内存大小减少了77.9%,在GeForce 940MX上的检测速度提高了22.8%,且在GTSDB和CCTSDB交通标志数据集上的检测mAP分别提高了12%和3.8%。  相似文献   

5.
为保证YOLO网络在嵌入式设备上正常运行,需采用剪枝算法精简滤波器以减小网络存储空间和计算量,而现有剪枝算法耗时较长且剪枝精度较低。提出一种基于参数子空间和批量归一化(BN)层缩放因子的双准则剪枝算法。将卷积层滤波器通过k均值聚类得到不同参数子空间,在子空间内使滤波器按权重排序并去除权重较低的滤波器,同时采用BN层缩放因子剪枝算法避免剪枝精度下降。实验结果表明,采用该算法剪枝后的YOLOv3网络在精度不变的情况下,占用的内存减少5/6且计算时间缩短1/3,与PF、CP等剪枝算法相比,该算法在保持较高网络精度的情况下计算量更少。  相似文献   

6.
YOLOv4目标检测算法主干网络庞大且参数量和计算量过多,难以部署在算力和存储资源有限的移动端嵌入式设备上。提出一种改进的YOLOv4目标检测算法,使用轻量化的ShuffleNet V2网络作为主干特征提取网络,更换模型激活函数及扩大卷积核,同时将YOLOv4网络中的普通卷积替换为深度可分离卷积,降低算法参数量、计算量和模型占用空间。在ShuffleNet V2网络结构的改进过程中分析并剪裁其基本组件,利用2个3 × 3卷积核级联的方式增强网络感受野,并使用Mish激活函数进一步提升网络检测精度和模型推理速度。在GPU平台和VisDrone 2020数据集上的实验结果表明,与YOLOv4算法相比,改进的YOLOv4算法在牺牲1.8个百分点的检测精度情况下,提高了27%的检测速度,压缩了23.7%的模型容量,并且能够充分发挥ZYNQ平台并行高速数据处理及低功耗的优势。  相似文献   

7.
针对现有基于深度学习的电铲检测方法未能很好地平衡检测速度与检测精度的问题,提出了一种改进YOLOv7模型,并将其用于矿用电铲检测。该模型以YOLOv7模型为基础,在主干网络中采用轻量化GhostNet网络进行特征提取,在颈部网络中采用轻量级GSConv替换部分普通卷积,以减少模型参数量和计算量,提高模型检测速度;考虑到轻量化改进后模型参数量减少对特征信息提取能力的影响,在不增加计算量的前提下,对颈部网络进行进一步改进,在扩展高效层聚合网络(ELAN)中嵌入坐标注意力机制(CA),同时利用双向特征金字塔网络(BiFPN)改进路径聚合网络(PANet),以提高网络对特征信息的提取能力,进而有效提高模型检测精度。实验结果表明,与YOLOv7模型相比,改进YOLOv7模型的参数量减少了75.4%,每秒浮点运算次数减少了82.9%,检测速度提高了24.3%;相较于其他目标检测模型,改进YOLOv7模型在检测速度和检测精度方面取得了良好的平衡,满足在露天煤矿场景下对电铲进行实时、准确检测的需求,为嵌入到移动设备中提供了有利条件。  相似文献   

8.
现有的安全帽佩戴检测网络模型存在准确率低、推理速度慢、部署到边缘计算设备时精度和实时性均达不到应用要求等问题。提出一种轻量化设计的DT-YOLO模型,对YOLOv4-Tiny目标检测模型进行改进,通过增加一个检测层提高模型在密集场景下对小目标的检测能力,并引入空间金字塔池化模块,提高模型对不同尺寸目标的检测能力。使用局部稀疏因子衰减算法进行稀疏化训练,从而使经过稀疏化训练后模型的平均精度均值(mAP)得到提高。根据缩放系数判断通道的重要性,并进行模型的通道剪枝,压缩模型的大小和计算量。使用TensorRT推理加速引擎进行网络层水平和垂直融合,消除拼接层操作,并将参数压缩成16位浮点型,提高模型的推理速度,最后在Jeston Nano边缘计算设备上实现模型部署。实验结果表明,与YOLOv4-Tiny模型相比,DT-YOLO模型的mAP提高了3.6个百分点,模型大小减少了83.5%,帧率提高137.7%,能够满足安全帽佩戴检测的要求。  相似文献   

9.
为解决在嵌入式设备上实时、高精度检测司机安全驾驶监督的问题,本文基于目标检测中经典的深度学习神经网络YOLOv3-tiny,运用通道剪枝技术成功在目标检测任务中实现了模型压缩,在精度不变的情况下减少了改进后神经网络的计算总量和参数总数.并基于NVIDIA的推理框架TensorRT进行了模型层级融合和半精度加速,部署加速后的模型.实验结果表明,加速模型的推理速度约为原模型的2倍,参数体积缩小一半,精度无损失,实现了高精度下实时检测的目的.  相似文献   

10.
针对目前机场鸟类目标检测模型存在实时检测效率低和在嵌入式设备中难以部署的问题,提出了一种基于改进YOLOv4的轻量级小目标快速检测方法 E-Y-slim。首先,将轻量化的EfficientNet-B0作为模型的特征提取网络,降低网络参数量和计算复杂度,提高检测速度;然后,裁剪特征融合网络中部分卷积层,并将检测层中标准卷积改为深度可分离卷积,进一步提升检测速度;最后,加入空间金字塔池化(SPP)结构以及交并比(IoU)预测分支,在保持算法检测效率情况下,提升算法检测精度。所提方法在PASCAL VOC鸟类数据集上平均精度(AP)为75.2%,检测速度达到50帧/秒,相较于YOLOv4的AP下降了7个百分点,但检测速度提升了42.9%。在实际机场鸟类数据集上AP为75.0%,检测速度达到49帧/秒,在AP相当的情况下,与YOLOv4相比模型参数量减少91.1%,检测速度提升了63.3%。实验结果表明,E-Y-slim能够满足在嵌入式设备上对机场鸟类活动目标快速检测的需求。  相似文献   

11.
人脸口罩佩戴检测是公共场所疫情防控中极为重要的措施,智能、高效地检测口罩佩戴情况对实现疫情防控的自动化和数字化具有重要意义。使用卷积类深度神经网络实现端到端的人脸口罩佩戴检测具有可行性,但卷积类神经网络具有结构复杂、参数量和浮点计算量庞大的特点,从而产生较高的计算开销和内存需求,极大地限制了其在资源有限的终端设备上的应用。为了使人脸口罩佩戴监督功能更易获取,并实现多尺度条件下的模型压缩和加速检测,提出一种基于改进YOLOv5的轻量化增强网络模型。设计参数量和计算量更小的GhostBottleneckCSP和ShuffleConv模块并替换原YOLOv5网络中的C3及部分Conv模块,以降低特征通道融合过程中的计算量并增强特征表达能力。实验结果表明,该模型的识别精度达95%以上,模型在精度近乎无损失的前提下,参数量和计算量分别仅为原YOLOv5网络的34.24%和33.54%,且在GPU和CPU上的运行速度分别提升13.64%和28.25%,降低了模型对内存存储及计算能力的要求,更适用于在资源有限的移动端部署。  相似文献   

12.
针对当前YOLOv4目标检测网络结构复杂、参数多、训练所需的配置高以及实时检测每秒传输帧数(FPS)低的问题,提出一种基于YOLOv4的轻量化目标检测算法ML-YOLO。首先,用MobileNetv3结构替换YOLOv4的主干特征提取网络,从而通过MobileNetv3中的深度可分离卷积大幅减少主干网络的参数量;然后,用简化的加权双向特征金字塔网络(Bi-FPN)结构替换YOLOv4的特征融合网络,从而用Bi-FPN中的注意力机制提高目标检测精度;最后,通过YOLOv4的解码算法来生成最终的预测框,并实现目标检测。在VOC2007数据集上的实验结果表明,ML-YOLO算法的平均准确率均值(mAP)达到80.22%,与YOLOv4算法相比降低了3.42个百分点,与YOLOv5m算法相比提升了2.82个百分点;而ML-YOLO算法的模型大小仅为44.75 MB,与YOLOv4算法相比减小了199.54 MB,与YOLOv5m算法相比,只高了2.85 MB。实验结果表明,所提的ML-YOLO模型,一方面较YOLOv4模型大幅减小了模型大小,另一方面保持了较高的检测精度,表明该算法可以满足移动端或者嵌入式设备进行目标检测的轻量化和准确性需求。  相似文献   

13.
基于改进YOLOv4算法的轻量化网络设计与实现   总被引:2,自引:0,他引:2  
在嵌入式设备上进行目标检测时易受能耗和功耗等限制,使得传统目标检测算法效果不佳。为此,对YOLOv4算法进行优化,设计YOLOv4-Mini网络结构,将其特征提取网络由CSPDarkNet53改为MobileNetv3-large并进行INT8量化处理,其中网络结构利用PW和DW卷积操作代替传统卷积操作以大幅减少计算量。采用SE模块为通道施加注意力机制,激活函数层运用h-swish非线性激活函数,在保证精度的情况下降低网络计算量。同时,通过量化感知训练将权重转为INT8类型,以实现模型轻量化,进一步降低网络参数量和计算量,从而在嵌入式设备上完成无人机数据集的目标检测任务。在NVIDIA Jetson Xavier NX设备上进行测试,结果显示,YOLOv4-MobileNetv3网络的mAP为34.3%,FPS为30,YOLOv4-Mini网络的mAP为32.5%,FPS为73,表明YOLOv4-Mini网络能够在低功耗、低能耗的嵌入式设备上完成目标实时检测任务。  相似文献   

14.
为了轻量化模型,便于移动端设备的嵌入,对YOLOv4网络进行了改进.首先,用MobileNetV3作为主干网络,并使用深度可分离卷积替换加强特征提取网络的普通卷积,降低模型参数量;其次,在104×104特征图输出时融合空洞率为2的空洞卷积,与52×52的特征层进行特征融合,获取更多的语义信息和位置信息,细化特征提取能力,提升模型对极小目标的检测性能;最后,将原来的池化层使用3个5×5的Maxpool进行串联,减少计算量,提升检测速度.实验结果表明,在华为云2020数据集上,改进算法的mAP比YM算法提高了2.33%,在公共数据集VOC07+12上, mAP提高了3.12%, FPS比原来的YOLOv4算法提高了一倍多,参数量降低至原来的18%,证明了改进算法的有效性.  相似文献   

15.
由于植物根茎交点目标较小,识别率低,且在使用嵌入式设备进行植物移植与栽培的过程中资源及功耗受限.针对这类问题,提出了一种基于改进YOLOv4的目标检测解决方法,并设置于本场景.采集8629张植物叶茎数据集图像,并对这些植物叶茎数据集进行标注,利用生成对抗网络(generative adversarial network...  相似文献   

16.
张新宇  丁胜  杨治佩 《计算机应用》2022,42(8):2378-2385
针对交通标志在某些场景中存在分辨率过低、被覆盖等环境因素影响导致在目标检测任务中出现漏检、误检的情况,提出一种基于改进注意力机制的交通标志检测算法。首先,针对交通标志因破损、光照等环境影响造成图像分辨率低从而导致网络提取图像特征信息有限的问题,在主干网络中添加注意力模块以增强目标区域的关键特征;其次,特征图中相邻通道间的局部特征由于感受野重叠而存在一定的相关性,用大小为k的一维卷积代替通道注意力模块中的全连接层,以达到聚合不同通道信息和减少额外参数量的作用;最后,在路径聚合网络(PANet)的中、小尺度特征层引入感受野模块来增大特征图的感受野以融合目标区域的上下文信息,从而提升网络对交通标志的检测能力。在中国交通标志检测数据集(CCTSDB)上的实验结果表明,所提出的YOLOv4(You Only Look Once v4)改进算法在引进极少的参数量与原算法检测速度相差不大的情况下,平均精确率均值(mAP)达96.88%,mAP提升了1.48%;而与轻量级网络YOLOv5s相比,在单张检测速度慢10 ms的情况下,所提算法mAP比YOLOv5s高3.40个百分点,检测速度达到40?frame/s,说明该算法完全满足目标检测实时性的要求。  相似文献   

17.
YOLOv5是目前单阶段目标检测性能较好的算法,但对目标边界回归的精确度不高,难以适用对预测框交并比要求较高的场景。基于YOLOv5算法,提出一种对硬件要求低、模型收敛速度快、目标框准确率高的新模型YOLO-G。改进特征金字塔结构(FPN),采用跨层级联的方式融合更多的特征,一定程度上防止了浅层语义信息的丢失,同时加深金字塔深度,对应增加检测层,使各种锚框的铺设间隔更加合理;其次把并行模式的注意力机制融入到网络结构中,赋予空间注意力模块和通道注意力模块相同的优先级,以加权融合的方式提取注意力信息,使网络可根据对空间和通道注意力的关注程度得到混合域注意力;通过降低网络的参数量和计算量对网络进行轻量化处理,防止因模型复杂度提升造成实时性能的损失。使用PASCAL VOC的2007、2012两个数据集来验证算法的有效性,YOLO-G比YOLOv5s的参数量减少了4.7%,计算量减少了47.9%,而mAP@0.5提高了3.1个百分点,mAP@0.5:0.95提高了5.6个百分点。  相似文献   

18.
针对Yolov3算法应用于人体检测中的准确率低,参数量、计算量和模型体积大难以在资源有限的嵌入式平台上实现等问题,提出了YOLOv3改进及其模型压缩算法.在YOLOv3中通过引入密集连接与多分支结构,增加网络宽度和多尺度感受野,加强特征重用,提高了模型的检测精度;对改进的YOLOv3通过联合优化权重损失函数和BN层缩放...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号