首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staff of the University of Maryland, Laboratory for Global Remote Sensing Studies have reprocessed the National Oceanic and Atmospheric Administration (NOAA) Global Vegetation Index (GVI) data record. Observations from April 1983 to June 1991 were mapped to a consistent projection (Plate Carreé) and radiometrically calibrated to spectral reflectance. Sensor degradation with time was taken into account. The normalized difference vegetation index (NVDI) was computed and bi-weekly composites formed to reduce residual cloud contamination. In addition, a set of data quality indicators were compiled during processing. Inspection of the reprocessed observations indicates that they are a significant improvement over the original GVI data. The temporal patterns in the observations appear consistent over time and between sensor systems. Considerable local variance is still evident in the observations, particularly in humid, cloud-prone regions of the globe. This is indicative of inherent limitations in the GVI data files. The ancillary data files in the reprocessed record may assist in addressing this atmospheric contamination problem. These reprocessed measurements should be of value in current efforts to study biospheric dynamics and in the design of future remote sensing missions to study global change.  相似文献   

2.
The long term Advanced Very High Resolution Radiometer (AVHRR)‐Normalized Difference Vegetation Index (NDVI) record provides a critical historical perspective on vegetation dynamics necessary for global change research. Despite the proliferation of new sources of global, moderate resolution vegetation datasets, the remote sensing community is still struggling to create datasets derived from multiple sensors that allow the simultaneous use of spectral vegetation for time series analysis. To overcome the non‐stationary aspect of NDVI, we use an artificial neural network (ANN) to map the NDVI indices from AVHRR to those from MODIS using atmospheric, surface type and sensor‐specific inputs to account for the differences between the sensors. The NDVI dynamics and range of MODIS NDVI data at 1° is matched and extended through the AVHRR record. Four years of overlap between the two sensors is used to train a neural network to remove atmospheric and sensor specific effects on the AVHRR NDVI. In this paper, we present the resulting continuous dataset, its relationship to MODIS data, and a validation of the product.  相似文献   

3.
NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) global-area coverage (GAC) data for the visible and near-infrared bands were used to investigate the relationship between the normalized difference vegetation index (NDVI) and the herbaceous vegetation in three representative rangeland types in eastern Botswana. Regressions between Landsat MSS band-7/band-5 ratios and field measurements of the cover of the live parts of herbaceous plants, above-ground biomass of live herbaceous plants and bare ground were used in conjunction with MSS data in order to interpolate the field data to 144 km2 areas for comparison with blocks of nine AVHRR GAC pixels. NOAA NDVI data were formed into 10-day composites in order to remove cloud cover and extreme off-nadir viewing angles. Both individual NDVI composite data and multitemporal integrations throughout the period May 1983-April 1984 were compared with the field data.

In multiple linear regressions, the cover and biomass of live herbaceous plants and bare ground measurements accounted for 42, 56 and 19 per cent respectively of the variation in NDVI. When factors were included in I he regression models to specify the site and date of acquisition of the data, between 93 and 99 per cent of the variation in NDVI was accounted for. The total herbaceous biomass at the end of the season was positively related to integrated NDVI, up lo the maximum biomass observed in a 12km × 12km area (590kgha?1)- These results give a different regression of herbaceous biomass values on integrated AVHRR NDVI to that reported by Tucker et at. (1985 b) for Senegalese grasslands. The effect of the higher cover of the tree canopy in Botswana on this relationship and on the detection of forage available to livestock is discussed.  相似文献   

4.
Satellite‐derived normalized difference vegetation index (NDVI) data have been used extensively to detect and monitor vegetation conditions at regional and global levels. A combination of NDVI data sets derived from AVHRR and MODIS can be used to construct a long NDVI time series that may also be extended to VIIRS. Comparative analysis of NDVI data derived from AVHRR and MODIS is critical to understanding the data continuity through the time series. In this study, the AVHRR and MODIS 16‐day composite NDVI products were compared using regression and agreement analysis methods. The analysis shows a high agreement between the AVHRR‐NDVI and MODIS‐NDVI observed from 2002 and 2003 for the conterminous United States, but the difference between the two data sets is appreciable. Twenty per cent of the total difference between the two data sets is due to systematic difference, with the remainder due to unsystematic difference. The systematic difference can be eliminated with a linear regression‐based transformation between two data sets, and the unsystematic difference can be reduced partially by applying spatial filters to the data. We conclude that the continuity of NDVI time series from AVHRR to MODIS is satisfactory, but a linear transformation between the two sets is recommended.  相似文献   

5.
Much effort has been made in recent years to improve the spectral and spatial resolution of satellite sensors to develop improved vegetation indices reflecting surface conditions. In this study satellite vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Very High Resolution Radiometer (AVHRR) are evaluated against two years of in situ measurements of vegetation indices in Senegal. The in situ measurements are obtained using four masts equipped with self‐registrating multispectral radiometers designed for the same wavelengths as the satellite sensor channels. In situ measurements of the MODIS Normalized Difference Vegetation Index (NDVI) and AVHRR NDVI are equally sensitive to vegetation; however, the MODIS NDVI is consistently higher than the AVHRR NDVI. The MODIS Enhanced Vegetation Index (EVI) proved more sensitive to dense vegetation than both AVHRR NDVI and MODIS NDVI. EVI and NDVI based on the MODIS 16‐day constrained view angle maximum value composite (CV‐MVC) product captured the seasonal dynamics of the field observations satisfactorily but a standard 16‐day MVC product estimated from the daily MODIS surface reflectance data without view angle constraints yielded higher correlations between the satellite indices and field measurements (R 2 values ranging from 0.74 to 0.98). The standard MVC regressions furthermore approach a 1?:?1 line with in situ measured values compared to the CV‐MVC regressions. The 16‐day MVC AVHRR data did not satisfactorily reflect the variation in the in situ data. Seasonal variation in the in situ measurements is captured reasonably with R 2 values of 0.75 in 2001 and 0.64 in 2002, but the dynamic range of the AVHRR satellite data is very low—about a third to a half of the values from in situ measurements. Consequently the in situ vegetation indices were emulated much better by the MODIS indices than by the AVHRR NDVI.  相似文献   

6.
Global 8 km resolution AVHRR (advanced very high resolution radiometer) NDVI (normalized difference vegetation index) 10‐day composite data sets have been used for numerous local to global scale vegetation time series studies during recent years. AVHRR Pathfinder (PAL) NDVI was available from 1981 until 2001, and the new AVHRR GIMMS NDVI was available from 1981 to the present time. A number of aspects potentially introduce noise in the NDVI data set due to the AVHRR sensor design and data processing. NDVI from SPOT‐4 VGT data is considered an improvement over AVHRR, and for this reason it is important to examine how and if the differences in sensor design and processing influence continental scale NDVI composite products. In this study, the quality of these AVHRR NDVI time series are evaluated by the continental scale 1 km resolution SPOT‐4 vegetation (VGT) 10‐day composite (S10) NDVI data. Three years of AVHRR PAL (1998–2000) and seven years of GIMMS (1998–2004) have been compared to 8 km resampled SPOT‐4 VGT (1998–2004) data. The dynamic range of SPOT‐4 VGT NDVI tends to be higher than the AVHRR PAL NDVI, whereas there is an exact match between AVHRR GIMMS NDVI and SPOT‐4 VGT NDVI. Ortho‐regression analysis on annually integrated values of AVHRR PAL/GIMMS and SPOT‐4 VGT on a continental scale reveals high correlations amongst the AVHRR and the SPOT data set, with lowest RMSE (root mean square error) on the GIMMS/SPOT‐4 VGT compared to the PAL/SPOT‐4 VGT.

Analyses on decade data likewise show that a linear relation exists between Spot‐4 VGT NDVI and the two AVHRR composite products; GIMMS explaining most of the Spot‐4 VGT NDVI variance compared to PAL. These results show that the AVHRR GIMMS NDVI is more consistent with Spot‐4 VGT NDVI compared to AVHRR PAL versus Spot‐4 VGT NDVI (in terms of RMSE and dynamic range) and can therefore be considered the more accurate long time AVHRR data record. Analyses performed on monthly maximum composites and decade composite data, however, reveal intra‐annual variations in the correlation between SPOT‐4 VGT and the two AVHRR data sets, which are attributed to different cloud masking algorithms. The SPOT‐4 VGT cloud‐screening algorithm is insufficient, thereby suppressing the rainy season NDVI.  相似文献   

7.
A nine-year (1982–1990) global normalized difference vegetation index (NDVI) data set with a spatial resolution of 1° by 1° and a temporal resolution of one month was compiled for use in climate studies. This data set was derived from higher resolution (5–8 km) monthly continental NDVI data sets that have been processed and archived by the Global Inventory Monitoring and Modelling Studies (GIMMS) group at NASA/Goddard Space Flight Center. The continental GIMMS NDVI data sets were calculated from Global Area Coverage (GAC) data collected at daily intervals by the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA-7, -9 and -11 satellites

The global 1° by 1° NDVI data set was produced to calculate land surface parameters for use within general circulation model J of the atmosphere (GCM). In view of this quantitative application, an evaluation is given of the representation by the NDVI data of the spectral properties of vegetation at the landsurface. Errors are defined as deviations from measurements obtained under standard conditions, i.e., conditions at the-top-of-the-atmosphere with no clouds, clear atmosphere, near-nadir viewing angles, overhead Sun, and invariant soil background. The discussion includes an assessment of (1) the data collected and processed onboard the AVHRR; (2) processing of the AVHRR data into the continental GIMMS NDVI data sets; (3) resampling of the continental data sets to a 1° by 1° data set; and (4) propagation of inconsistencies and biases from (1), (2) and (3) into the 1° by 1° global NDVI data. Examples are shown of the temporal and spatial variations in spectral properties of vegetation contained in the 1° by 1° NDVI data, and these are compared with the dynamics of biophysical parameters derived from land cover classes that were used in previous climate studies.  相似文献   

8.
The Normalized DilTerence Vegetation Index (NDVI) derived from NOAA's Advanced Very High Resolution Radiometer (AVHRR) has been widely used in monitoring continental and global vegetation distribution and dynamics, drought severity and location, and environmental deterioration. Since 1982, NOAA has produced the Weekly Global Vegetation Index (GVI) product from AVHRR. The analyses of the GVI product have revealed many problems due to the simplified radiometric correction involved in the processing. Those limitations have inspired several elTorts to reprocess the NOAA GVI data sets to produce an improved representation of global NDVI patterns. In this paper, the quality of three Global NDVI products resulting from very simple to rather sophisticated reprocessing was examined by using a global approach. In general, the quality of data improves with increasing sophistication of radiometric correction. However, this study reveals some significant errors common in all three products assessed. The problems include a systematic annual increase in values computed from a single satellite and jumps between consecutive satellites. These errors are large enough to alTect results of the long term time-series analyses. This pattern suggests an additional radiometric distortion in NOAA/ AVHRR data. It is found that the values computed from data of the first year after satellite launch are roughly the same statistically for NOAA satellites. Thus, the discontinuity ofNDVls between satellites appears to be mainly caused by the systematic drift. Therefore, data collected in the first year of satellite launch might be considered as a baseline for correcting the systematic errors. By comparing NDVI from the first year of satellites in space, it is also found that NDVI increases at higher latitude and decreases or keeps constant at lower latitude. This change of NDVI with time might signal the change of global climate.  相似文献   

9.
NOAA-6 and NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) global-area coverage (4?km ground resolution) data were obtained at three-day intervals throughout each of the four-month periods covering the 1980, 1983 and 1984 growing seasons, between latitudes 10° and 22° North in the Democratic Republic of Sudan. Daily rainfall data for twelve meteorological stations spanning the Savanna Zone were analysed. Rainfall in Sudan during 1980 was below normal, but in 1983 and 1984 there were moderate and severe droughts. The satellite data were used to calculate normalized difference vegetation index (NDVI) values from the visible and near-infrared bands of the satellite data. These were processed into ten-day composite data sets using the AVHRR thermal-infrared channel as a cloud screen and a temporal compositing procedure that reduces cloud contamination and selects viewing angles closest to nadir.

The ten-day composite NDVI values and the integrals of NDVI for each growing season were found to be closely correlated with rainfall. The constants of regressions between NDVI and rainfall were lower in 1983 and 1984 than in 1980, which suggests there was reduced water-use efficiency by the rangeland vegetation in drought years. It was found that July and August NDVI values were closely related to the integrated NDVI values; hence early- and mid-season NDVI data could be used to predict annual primary production. Images showing the geographical distribution of values of NDVI prepared for the three years clearly illustrate the effects of the 1983 and 1984 droughts, compared with the higher rainfall of 1980. The precision of the relationship between rainfall and the vegetation indices for the meteorological stations encourages the view that NOAA AVHRR GAC composite NDVI values can be used to monitor effective rainfall in the Savanna Zone of the Democratic Republic of Sudan  相似文献   

10.
The relationship between AVHRR-derived normalized difference vegetation index (NDVI) values and those of future sensors is critical to continued long-term monitoring of land surface properties. The follow-on operational sensor to the AVHRR, the Visible/Infrared Imager/Radiometer Suite (VIIRS), will be very similar to the NASA Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. NDVI data derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua platforms) and AVHRR (NOAA-16 and NOAA-17) sensors were compared over the same time periods and a variety of land cover classes within the conterminous United States. The results indicate that the 16-day composite NDVI values are quite similar over the composite intervals of 2002 and 2003, and linear relationships exist between the NDVI values from the various sensors. The composite AVHRR NDVI data included water and cloud masks and adjustments for water vapor as did the MODIS NDVI data. When analyzed over a variety of land cover types and composite intervals, the AVHRR derived NDVI data were associated with 89% or more of the variation in the MODIS NDVI values. The results suggest that it may be possible to successfully reprocess historical AVHRR data sets to provide continuity of NDVI products through future sensor systems.  相似文献   

11.
A method is developed to separate Normalised Difference Vegetation Index (NDVI) time series data into contributions from woody (perennial) and herbaceous (annual) vegetation, and thereby to infer their separate leaf area indices and cover fractions. The method is formally consistent with fundamental linearity requirements for such a decomposition, and is capable of rejecting contaminated NDVI data. In this study, estimates of annual averaged woody cover and monthly averaged herbaceous cover over Australia are determined using Pathfinder AVHRR Land series (PAL) Global Area Coverage (GAC) Advanced Very High Resolution Radiometer (AVHRR) NDVI data from 1981 to 1994, together with ground-based measurements of leaf area index (LAI) and foliage projective cover (FPC).  相似文献   

12.
Temporal relations between AVHRR NDVI and rainfall data over East Africa at 10-day and monthly time scales have been analysed using distributed lag models. On average, only 10 per cent of the variation in 10-day NDVI values could be explained by concurrent and preceding rainfall. Corresponding values for monthly data was 36 per cent. If it is assumed that rainfall data can be used as an indicator of vegetation development the study indicates that AVHRR NDVI may have limitations for temporal vegetation monitoring in these environments.  相似文献   

13.
AVHRR (Advanced Very High Resolution Radiometer) GIMMS (Global Inventory Modelling and Mapping Studies) NDVI (Normalized Difference vegetation Index) data is available from 1981 to present time. The global coverage 8 km resolution 15-day composite data set has been used for numerous local to global scale vegetation time series studies during recent years. Several aspects however potentially introduce noise in the NDVI data set due to the AVHRR sensor design and data processing. More recent NDVI data sets from both Terra MODIS and SPOT VGT data are considered an improvement over AVHRR and these products in theory provide a possibility to evaluate the accuracy of GIMMS NDVI time series trend analysis for the overlapping period of available data. In this study the accuracy of the GIMMS NDVI time series trend analysis is evaluated by comparison with the 1 km resolution Terra MODIS (MOD13A2) 16-day composite NDVI data, the SPOT Vegetation (VGT) 10-day composite (S10) NDVI data and in situ measurements of a test site in Dahra, Senegal. Linear least squares regression trend analysis on eight years of GIMMS annual average NDVI (2000-2007) has been compared to Terra MODIS (1 km and 8 km resampled) and SPOT VGT NDVI data 1 km (2000-2007). The three data products do not exhibit identical patterns of NDVI trends. SPOT VGT NDVI data are characterised by higher positive regression slopes over the 8-year period as compared to Terra MODIS and AVHRR GIMMS NDVI data, possibly caused by a change in channels 1 and 2 spectral response functions from SPOT VGT1 to SPOT VGT2 in 2003. Trend analysis of AVHRR GIMMS NDVI exhibits a regression slope range in better agreement with Terra MODIS NDVI for semi-arid areas. However, GIMMS NDVI shows a tendency towards higher positive regression slope values than Terra MODIS in more humid areas. Validation of the different NDVI data products against continuous in situ NDVI measurements for the period 2002-2007 in the semi-arid Senegal revealed a good agreement between in situ measurements and all satellite based NDVI products. Using Terra MODIS NDVI as a reference, it is concluded that AVHRR GIMMS coarse resolution NDVI data set is well-suited for long term vegetation studies of the Sahel-Sudanian areas receiving < 1000 mm rainfall, whereas interpretation of GIMMS NDVI trends in more humid areas of the Sudanian-Guinean zones should be done with certain reservations.  相似文献   

14.
The Advanced Very High Resolution Radiometer (AVHRR) has become one of the most important sensors for monitoring the terrestrial environment at resolutions of 1 km to very coarse resolutions of 15 km and greater. To make these data suitable for scientific and other applications considerable effort has been devoted to the creation of global data sets. Experience has demonstrated that even for a relatively simple sensor such as the AVHRR, the task of creating global data set is fraught with difficulties and that a number of iterations have been necessary despite considerable efforts in the specification of users' requirements

Four types of data processing streams, overlapping in time, have occurred in the creation of global data sets from the AVHRR. The first three data processing streams were all based on the reduced resolution, Global Area Coverage (GAC) data set, which is collected globally every day. In the first data processing stream a much reduced data set was created in the form of the Global Vegetation Index (GVI) product: revised improved versions of the product have been produced. In the second data processing stream an improved product was created by workers at NASA's Goddard Space Flight Center with higher spatial resolution but which until recently has only been available by continent. This has resulted in the creation of a number of regional data sets. In the third data processing stream operational creation of global data sets at moderately coarse resolution (c. 8 km) is being initiated. The most notable example of this data processing stream is part of NASA's Pathfinder project and stems in large part directly from the second data processing stream: it will involved production of a reprocessed improved global data set for the period from 1982 to the present. In the fourth data processing stream the full potential of the AVHRR in terms of its spatial resolution is being realized, through the generation of a global data set at 1 1 km resolution data.  相似文献   

15.
Effects of atmospheric variation on AVHRR NDVI data   总被引:1,自引:0,他引:1  
The AVHRR (Advanced Very High Resolution Radiometer) series of instruments has frequently been used for vegetation studies. The 25+ year record has enabled important time-series studies. Many applications use NDVI (Normalized Difference Vegetation Index), or derivatives of it, as their operational variable. However, most AVHRR datasets have incomplete atmospheric correction, because of which there is considerable, but largely unknown, uncertainty in the significance of differences in NDVI and other short wave observations from AVHRR instruments.The purpose of this study was to gain better understanding of the impact of incomplete or lack of atmospheric correction in widely-used, publicly available processed AVHRR-NDVI long-term datasets. This was accomplished by comparison with atmospherically corrected AVHRR data at AERONET (AErosol RObotic NETwork) sunphotometer sites in 1999. The datasets included in this study are: TOA (Top Of Atmosphere) that is with no atmospheric correction; PAL (Pathfinder AVHRR Land); and an early version of the new LTDR (Long Term Data Record) NDVI. The other publicly available datasets like GIMMS (Global Inventory Modeling and Mapping studies) and GVI (Global Vegetation Index) have atmospheric error budget similar to that of TOA, because no atmospheric correction is used in either processing stream. Of the three datasets, LTDR was found to have least errors (accuracy = 0.0064 to − 0.024, precision = 0.02 to 0.037 for clear and average atmospheric conditions) followed by PAL (accuracy = − 0.145 to − 0.035, precision = 0.0606 to 0.0418), and TOA (accuracy = − 0.0791 to − 0.112, precision = 0.0613 to 0.0684). It was also observed that temporal maximum value compositing technique does not cause significant improvement of precision in regions experiencing persistently high AOT (Aerosol Optical Thickness).  相似文献   

16.
Regression and ratio estimators are used to integrate AVHRR-GAC and Landsat MSS digital data to estimate forest area in the continental United States. Forestlands are enumerated for the 48 contiguous states using five different AVHRR-GAC data sets. The five GAC data sets tested, each with a spatial resolution of 4 km, were composed of different combinations of vegetation index and thermal data acquired over the nine month growing period in 1984. Twenty Landsat MSS scenes were selected countrywide and used to calibrate AVHRR forest estimates. Results indicated that the GAC and MSS forest estimates were not highly correlated; R2 values ranged from 0.5 to 0.7. Although the ratio of means and linear regression corrections were, on the average, closer to national U.S. Forest Service forest area estimates, these correction procedures did not consistently improve GAC estimates of forest area. GAC forest area estimates tended to be high in densely forested regions such as the northeast and low in sparsely forested areas. This fact, and the low correlation coefficients, indicate that AVHRR data should be used for primary stratification (with MSS as the second stage) and not as an auxiliary variable in a regression correction procedure.  相似文献   

17.
The boreal forest biome is one of the largest on Earth, covering more than 14% of the total land surface. Fire disturbance plays a dominant role in boreal ecosystems, altering forest succession, biogeochemical cycling, and carbon sequestration. We used two time-series data sets of Advanced Very High Resolution Radiometer (AVHRR) Normalized Differenced Vegetation Index (NDVI) imagery for North America to analyze vegetation recovery after fire. The Canadian Forest Service Large Fire Database was used to identify the location of fires and calculate scaled NDVI statistics from the Pathfinder AVHRR Land (PAL) and the Global Inventory Modeling and Mapping Studies (GIMMS) AVHRR data sets. Unburned areas were also identified, based on interannual variability metrics, in order to reduce the effects of factors other than fire on the temporal behavior of scaled NDVI. Burned and unburned areas were stratified by ecoregion to ensure the presence of comparable land cover types and account for influences of local environmental variability. Temporal anomalies in NDVI for burned and unburned areas show the impacts of fire and the recovery of the forest to pre-burn levels, and indicate changes in variability that might be associated with vegetation compositional changes consistent with early successional species. The rate of recovery varied in the three episodic fire years on which we focused our analysis (1981, 1989, and 1995), but were consistently shorter than previous studies that emphasized the most impacted areas within fires. Temporal variability in the time series, represented by the difference of burned and unburned area anomalies, increased beyond the observed post-fire recovery period. This indicates residual effects of fire disturbance over the regrowth period, perhaps associated with early successional vegetation and increased susceptibility to drought. Distinct differences were noted between the PAL and GIMMS data sets, with evidence for systematic data processing artifacts remaining in the PAL time series.  相似文献   

18.
The ability of NOAA/AVHRR data to monitor vegetation response to rainfall in three different vegetation zones was assessed along a north-south transect in Israel. The NDVI database was developed from atmospherically- and radiometrically-corrected NDVI composites from observations spanning three years. Three vegetation zones, Mediterranean region, transition zone, and semiarid region, were geographically separated by means of NDVI values. Based on three years of AVHRR observations during a relatively dry year and two years with near average rainfall, the phenological characteristics for all three vegetation zones were very similar and stable. The results showed that only a few AVHRR observations are necessary to monitor the seasonal and spatial variability of vegetation cover in different climatic zones located in Israel. The NDVI of the Israeli transition zone was found to be very sensitive to rainfall. The difference between maximum and minimum NDVI values in rainy season in the transition zone was at least two times higher than that in the Mediterranean and the semiarid regions. This phenomenon can be used as an indicator of any environmental changes in this region.  相似文献   

19.
The evaluation of a new global monthly leaf area index (LAI) data set for the period July 1981 to December 2006 derived from AVHRR Normalized Difference Vegetation Index (NDVI) data is described. The physically based algorithm is detailed in the first of the two part series. Here, the implementation, production and evaluation of the data set are described. The data set is evaluated both by direct comparisons to ground data and indirectly through inter-comparisons with similar data sets. This indirect validation showed satisfactory agreement with existing LAI products, importantly MODIS, at a range of spatial scales, and significant correlations with key climate variables in areas where temperature and precipitation limit plant growth. The data set successfully reproduced well-documented spatio-temporal trends and inter-annual variations in vegetation activity in the northern latitudes and semi-arid tropics. Comparison with plot scale field measurements over homogeneous vegetation patches indicated a 7% underestimation when all major vegetation types are taken into account. The error in mean values obtained from distributions of AVHRR LAI and high-resolution field LAI maps for different biomes is within 0.5 LAI for six out of the ten selected sites. These validation exercises though limited by the amount of field data, and thus less than comprehensive, indicated satisfactory agreement between the LAI product and field measurements. Overall, the inter-comparison with short-term LAI data sets, evaluation of long term trends with known variations in climate variables, and validation with field measurements together build confidence in the utility of this new 26 year LAI record for long term vegetation monitoring and modeling studies.  相似文献   

20.
Abstract

NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRJT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号