首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a machine loading problem of a flexible manufacturing system (FMS) is discussed having the bicriterion objectives of minimizing system unbalance and maximizing throughput in the presence of technological constraints such as available machining time and tool slots. A generic 0–1 integer programming formulation with the objective functions and constraints described above has been proposed. A hybrid algorithm based on tabu search and simulated annealing (SA) is employed to solve the problem. The main advantage of this approach is that a short-term memory provided by the tabu list can be used to avoid revisiting the solution while preserving the stochastic nature of the SA method. The proposed methodology has been tested on ten standard problems and the results obtained are compared with those from some of the existing heuristics.  相似文献   

2.
Production planning of a flexible manufacturing system (FMS) is plagued by two interrelated problems, namely 1) part-type selection and 2) operation allocation on machines. The combination of these problems is termed a machine loading problem, which is treated as a strongly NP-hard problem. In this paper, the machine loading problem has been modeled by taking into account objective functions and several constraints related to the flexibility of machines, availability of machining time, tool slots, etc. Minimization of system unbalance (SU), maximization of system throughput (TH), and the combination of SU and TH are the three objectives of this paper, whereas two main constraints to be satisfied are related to time and tool slots available on machines. Solutions for such problems even for a moderate number of part types and machines are marked by excessive computational complexities and thus entail the application of some random search optimization techniques to resolve the same. In this paper, a new algorithm termed as constraints-based fast simulated annealing (SA) is proposed to address a well-known machine loading problem available in the literature. The proposed algorithm enjoys the merits of simple SA and simple genetic algorithm and is designed to be free from some of their drawbacks. The enticing feature of the algorithm is that it provides more opportunity to escape from the local minimum. The application of the algorithm is tested on standard data sets, and superiority of the same is witnessed. Intensive experimentations were carried out to evaluate the effectiveness of the proposed algorithm, and the efficacy of the same is authenticated by efficiently testing the performance of algorithm over well-known functions  相似文献   

3.
Machine loading problem in a flexible manufacturing system (FMS) encompasses various types of flexibility aspects pertaining to part selection and operation assignments. The evolution of flexible manufacturing systems offers great potential for increasing flexibility by ensuring both cost-effectiveness and customized manufacturing at the same time. This paper proposes a linear mathematical programming model with both continuous and zero-one variables for job selection and operation allocation problems in an FMS to maximize profitability and utilization of system. The proposed model assigns operations to different machines considering capacity of machines, batch-sizes, processing time of operations, machine costs, tool requirements, and capacity of tool magazine. A genetic algorithm (GA) is then proposed to solve the formulated problem. Performance of the proposed GA is evaluated based on some benchmark problems adopted from the literature. A statistical test is conducted which implies that the proposed algorithm is robust in finding near-optimal solutions. Comparison of the results with those published in the literature indicates supremacy of the solutions obtained by the proposed algorithm for attempted model.  相似文献   

4.
Manufacturing industries are rapidly changing from economies of scale to economies of scope, characterized by short product life cycles and increased product varieties. This implies a need to improve the efficiency of job shops while still maintaining their flexibility. These objectives are achieved by Flexible manufacturing systems (FMS). The basic aim of FMS is to bring together the productivity of flow lines and the flexibility of job shops. This duality of objectives makes the management of an FMS complex. In this article, the loading problem in random type FMS, which is viewed as selecting a subset of jobs from the job pool and allocating them among available machines, is considered. A heuristic based on multi-stage programming approach is proposed to solve this problem. The objective considered is to minimize the system unbalance while satisfying the technological constraints such as availability of machining time and tool slots. The performance of the proposed heuristic is tested on 10 sample problems available in FMS literature and compared with existing solution methods. It has been found that the proposed heuristic gives good results.  相似文献   

5.
In the practical production process of a flexible manufacturing system (FMS), unexpected disturbances such as rush orders arrival and machine breakdown may inevitably render the existing schedule infeasible. This makes dynamic rescheduling necessary to respond to the disturbances and to improve the efficiency of the disturbed FMS. Compared with the static scheduling, the dynamic rescheduling relies on more effective and robust search approaches for its critical requirement of real-time optimal response. In this paper, a filtered-beam-search (FBS) -based heuristic algorithm is proposed to solve the dynamic rescheduling problem in a large and complicated job shop FMS environment with realistic disturbances. To enhance its performance, the proposed algorithm makes improvement in the local/global evaluation functions and the generation procedure of branches. With respect to a due date-based objective (weighted quadratic tardiness), computational experiments are studied to evaluate the performance of the proposed algorithm in comparison with those of other popular methods. The results show that the proposed FBS-based algorithm performs very well for dynamic rescheduling in terms of computational efficiency and solution quality.  相似文献   

6.
In this paper a complex scheduling problem in flexible manufacturing system (FMS) has been addressed with a novel approach called knowledge based genetic algorithm (KBGA). The literature review indicates that meta-heuristics may be used for combinatorial decision-making problem in FMS and simple genetic algorithm (SGA) is one of the meta-heuristics that has attracted many researchers. This novel approach combines KB (which uses the power of tacit and implicit expert knowledge) and inherent quality of SGA for searching the optima simultaneously. In this novel approach, the knowledge has been used on four different stages of SGA: initialization, selection, crossover, and mutation. Two objective functions known as throughput and mean flow time, have been taken to measure the performance of the FMS. The usefulness of the algorithm has been measured on the basis of number of generations used for achieving better results than SGA. To show the efficacy of the proposed algorithm, a numerical example of scheduling data set has been tested. The KBGA was also tested on 10 different moderate size of data set to show its robustness for large sized problems involving flexibility (that offers multiple options) in FMS.  相似文献   

7.
This paper considers the integrated FMS (flexible manufacturing system) scheduling problem (IFSP) consisting of loading, routing, and sequencing subproblems that are interrelated to each other. In scheduling FMS, the decisions for the subproblems should be appropriately made to improve resource utilization. It is also important to fully exploit the potential of the inherent flexibility of FMS. In this paper, a symbiotic evolutionary algorithm, named asymmetric multileveled symbiotic evolutionary algorithm (AMSEA), is proposed to solve the IFSP. AMSEA imitates the natural process of symbiotic evolution and endosymbiotic evolution. Genetic representations and operators suitable for the subproblems are proposed. A neighborhood-based coevolutionary strategy is employed to maintain the population diversity. AMSEA has the strength to simultaneously solve subproblems for loading, routing, and sequencing and to easily handle a variety of FMS flexibilities. The extensive experiments are carried out to verify the performance of AMSEA, and the results are reported.  相似文献   

8.
The high investment cost of flexible manufacturing systems (FMS) requires their management to be effective and efficient. The effectiveness in managing FMSs includes addressing machine loading, scheduling parts and dispatching vehicles and the quality of the solution. Therefore the problem is inevitably multi-criteria, and decision maker's judgement may contribute to the quality of the solution and the systems's performance. On the other hand, each of these problems of FMS is hard to optimize due to the large and discrete solution spaces (NP-hard). The FMS manager must address each of these problems hierarchically (separately) or simultaneously (aggregately) in a limited time. The efficiency of the management is related to the response time.

Here we propose a decision support system that utilizes an evolutionary algorithm (EA) with a memory of “good” past experiments as the solution engine. Therefore, even in the absence of an expert decision maker the performance of the solution engine and/or the quality of the solutions are maintained.

The experiences of the decision maker(s) are collected in a database (i.e., memory-base) that contains problem characteristics, the modeling parameters of the evolutionary program, and the quality of the solution. The solution engine in the decision support system utilizes the information contained in the memory-base in solving the current problem. The initial population is created based on a memory-based seeding algorithm that incorporates information extracted from the quality solutions available in the database. Therefore, the performance of the engine is designed to improve following each use gradually. The comparisons obtained over a set of randomly generated test problems indicate that EAs with the proposed memory-based seeding perform well. Consequently, the proposed DSS improves not only the effectiveness (better solution) but also the efficiency (shorter response time) of the decision maker(s).  相似文献   


9.
Abstract

Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user’s applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.  相似文献   

10.
This paper deals with the single machine scheduling problem to minimize the total weighted tardiness in the presence of sequence dependent setup. Firstly, a mathematical model is given to describe the problem formally. Since the problem is NP-hard, a general variable neighborhood search (GVNS) heuristic is proposed to solve it. Initial solution for the GVNS algorithm is obtained by using a constructive heuristic that is widely used in the literature for the problem. The proposed algorithm is tested on 120 benchmark instances. The results show that 37 out of 120 best known solutions in the literature are improved while 64 instances are solved equally. Next, the GVNS algorithm is applied to single machine scheduling problem with sequence dependent setup times to minimize the total tardiness problem without changing any implementation issues and the parameters of the GVNS algorithm. For this problem, 64 test instances are solved varying from small to large sizes. Among these 64 instances, 35 instances are solved to the optimality, 16 instances' best-known results are improved, and 6 instances are solved equally compared to the best-known results. Hence, it can be concluded that the GVNS algorithm is an effective, efficient and a robust algorithm for minimizing tardiness on a single machine in the presence of setup times.  相似文献   

11.
一种新的FMS优化调度算法   总被引:3,自引:0,他引:3  
提出一种将遗传算法和启发式算法相结合的新的混合算法,以解决FMS中的优化调度问题。该混合算法克服了以往遗传算法在FMS中应用的不足之处,并具有搜索效率高且稳定的特点。最后以实例验证了该算法的高效性和稳定性。  相似文献   

12.
Although the concept of just-in-time (JIT) production systems has been proposed for over two decades, it is still important in real-world production systems. In this paper, we consider minimizing the total weighted earliness and tardiness with a restrictive common due date in a single machine environment, which has been proved as an NP-hard problem. Due to the complexity of the problem, metaheuristics, including simulated annealing, genetic algorithm, tabu search, among others, have been proposed for searching good solutions in reasonable computation times. In this paper, we propose a hybrid metaheuristic that uses tabu search within variable neighborhood search (VNS/TS). There are several distinctive features in the VNS/TS algorithm, including different ratio of the two neighborhoods, generating five points simultaneously in a neighborhood, implementation of the B/F local search, and combination of TS with VNS. By examining the 280 benchmark problem instances, the algorithm shows an excellent performance in not only the solution quality but also the computation time. The results obtained are better than those reported previously in the literature.  相似文献   

13.
Scheduling in flexible manufacturing systems (FMS) is described as an NP-Hard problem. Its complexity has increased significantly in line with the development of FMS over the past years. This paper presents a non-dominated sorting biogeography-based optimization (NSBBO) for scheduling problem of FMS having multi loading-unloading and shortcuts infused in the reentrant characteristics. This model is formulated to identify the near optimal trade-off solutions capable of addressing the bi-objectives of minimization of makespan and total earliness. The goal is to simultaneously determine the best machine assignment and job sequencing to satisfy both objectives. We propose the development of NSBBO by substituting the standard linear function of emigration-immigration rate with three approaches based on sinusoidal, quadratic and trapezoidal models. A selection of test problems was examined to analyze the effectiveness, efficiency and diversity levels of the proposed approaches as compared to standard NSBBO and NSGA-II. The results have shown that the NSBBO-trapezoidal model performed favorably and is comparable to current existing models. We conclude that the developed NSBBO and its variants are suitable alternative methods to achieve the bi-objective satisfaction of reentrant FMS scheduling problem.  相似文献   

14.
Abstract

In today’s competitive electricity market, managing transmission congestion in deregulated power system has created challenges for independent system operators to operate the transmission lines reliably within the limits. This paper proposes a new meta-heuristic algorithm, called as symbiotic organisms search (SOS) algorithm, for congestion management (CM) problem in pool based electricity market by real power rescheduling of generators. Inspired by interactions among organisms in ecosystem, SOS algorithm is a recent population based algorithm which does not require any algorithm specific control parameters unlike other algorithms. Various security constraints such as load bus voltage and line loading are taken into account while dealing with the CM problem. In this paper, the proposed SOS algorithm is applied on modified IEEE 30- and 57-bus test power system for the solution of CM problem. The results, thus, obtained are compared to those reported in the recent state-of-the-art literature. The efficacy of the proposed SOS algorithm for obtaining the higher quality solution is also established.  相似文献   

15.
A decision support system for production scheduling in an ion plating cell   总被引:2,自引:0,他引:2  
Production scheduling is one of the major issues in production planning and control of individual production units which lies on the heart of the performance of manufacturing organizations. Traditionally, production planning decision, especially scheduling, was resolved through intuition, experience, and judgment. Machine loading is one of the process planning and scheduling problems that involves a set of part types and a set of tools needed for processing the parts on a set of machines. It provides solution on assigning parts and allocating tools to optimize some predefined measures of productivity. In this study, Ion Plating industry requires similar approaches on allocating customer's order, i.e. grouping production jobs into batches and arrangement of machine loading sequencing for (i) producing products with better quality products; and (ii) enabling to meet due date to satisfy customers. The aim of this research is to develop a Machine Loading Sequencing Genetic Algorithm (MLSGA) model to improve the production efficiency by integrating a bin packing genetic algorithm model in an Ion Plating Cell (IPC), such that the entire system performance can be improved significantly. The proposed production scheduling system will take into account the quality of product and service, inventory holding cost, and machine utilization in Ion Plating. Genetic Algorithm is being chosen since it is one of the best heuristics algorithms on solving optimization problems. In the case studies, industrial data of a precious metal finishing company has been used to simulate the proposed models, and the computational results have been compared with the industrial data. The results of developed models demonstrated that less resource could be required by applying the proposed models in solving production scheduling problem in the IPC.  相似文献   

16.
The nature-inspired algorithms (NIAs) have shown efficiency to solve many complex real-world optimisation problems. The efficiency of NIAs is measured by their ability to find adequate results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This paper presents a solution for lower order system modelling using spider monkey optimisation (SMO) algorithm to obtain a better approximation for lower order systems and reflects almost original higher order system's characteristics. Further, a local search strategy, namely, power law-based local search is incorporated with SMO. The proposed strategy is named as power law-based local search in SMO (PLSMO). The efficiency, accuracy and reliability of the proposed algorithm is tested over 20 well-known benchmark functions. Then, the PLSMO algorithm is applied to solve the lower order system modelling problem.  相似文献   

17.
Improved cuckoo search for reliability optimization problems   总被引:1,自引:0,他引:1  
An efficient approach to solve engineering optimization problems is the cuckoo search algorithm. It is a recently developed meta-heuristic optimization algorithm. Normally, the parameters of the cuckoo search are kept constant. This may result in decreasing the efficiency of the algorithm. To cope with this issue, the cuckoo search parameters should be tuned properly. In this paper, an improved cuckoo search algorithm, enhancing the accuracy and convergence rate of the cuckoo search algorithm, is presented. Then, the performance of the proposed algorithm is tested on some complex engineering optimization problems. They are four well-known reliability optimization problems, a large-scale reliability optimization problem as well as a complex system, which is a 15-unit system reliability optimization problem. Finally, the results are compared with those given by several well-known methods. Simulation results demonstrate the effectiveness of the proposed algorithm.  相似文献   

18.
This paper addresses the problem of scheduling parts in job shop cellular manufacturing systems by considering exceptional parts that need to visit machines in different cells and reentrant parts which need to visit some machines more than once in non-consecutive manner. Initially, an integer linear programming (ILP) model is presented for the problem to minimize the makespan, which considers intercellular moves and non-consecutive multiple processing of parts on a machine. Due to the complexity of the model, a simulated annealing (SA) based solution approach is developed to solve the problem. To increase the efficiency of the search algorithm, a neighborhood structure based on the concept of blocks is applied. Subsequently, the efficiency of the ILP model and the performance of the proposed SA are assessed over a set of problem instances taken from the literature. The proposed ILP model was coded in Lingo 8.0 and the solution obtained by the proposed SA was compared to the optimal values. The computational results demonstrate that the proposed ILP model and SA algorithm are effective and efficient for this problem.  相似文献   

19.
Cellular manufacturing system—an important application of group technology (GT)—has been recognized as an effective way to enhance the productivity in a factory. Consequently, a multi-objective dynamic cell formation problem is presented in this paper, where the total cell load variation and sum of the miscellaneous costs (machine cost, inter-cell material handling cost, and machine relocation cost) are to be minimized simultaneously. Since this type of problem is NP-hard, a new multi-objective scatter search (MOSS) is designed for finding locally Pareto-optimal frontier. To demonstrate the efficiency of the proposed algorithm, MOSS is compared with two salient multi-objective genetic algorithms, i.e. SPEA-II and NSGA-II based on some comparison metrics and statistical approach. The computational results indicate the superiority of the proposed MOSS compared to these two genetic algorithms.  相似文献   

20.
This paper proposes an ant colony optimisation-based software system for solving FMS scheduling in a job-shop environment with routing flexibility, sequence-dependent setup and transportation time. In particular, the optimisation problem for a real environment, including parallel machines and operation lag times, has been approached by means of an effective pheromone trail coding and tailored ant colony operators for improving solution quality. The method used to tune the system parameters is also described. The algorithm has been tested by using standard benchmarks and problems, properly designed for a typical FMS layout. The effectiveness of the proposed system has been verified in comparison with alternative approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号