首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
This paper is concerned with the H control problem for networked control systems (NCSs) with random packet dropouts. The NCS is modeled as a sampled‐data system which involves a continuous plant, a digital controller, an event‐driven holder and network channels. In this model, two types of packet dropouts in the sensor‐to‐controller (S/C) side and controller‐to‐actuator (C/A) side are both considered, and are described by two mutually independent stochastic variables satisfying the Bernoulli binary distribution. By applying an input/output delay approach, the sampled‐data NCS is transformed into a continuous time‐delay system with stochastic parameters. An observer‐based control scheme is designed such that the closed‐loop NCS is stochastically exponentially mean‐square stable and the prescribed H disturbance attenuation level is also achieved. The controller design problem is transformed into a feasibility problem for a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed design method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

2.
The purpose of fault diagnosis of stochastic distribution control systems is to use the measured input and the system output probability density function to obtain the fault estimation information. A fault diagnosis and sliding mode fault‐tolerant control algorithms are proposed for non‐Gaussian uncertain stochastic distribution control systems with probability density function approximation error. The unknown input caused by model uncertainty can be considered as an exogenous disturbance, and the augmented observation error dynamic system is constructed using the thought of unknown input observer. Stability analysis is performed for the observation error dynamic system, and the H performance is guaranteed. Based on the information of fault estimation and the desired output probability density function, the sliding mode fault‐tolerant controller is designed to make the post‐fault output probability density function still track the desired distribution. This method avoids the difficulties of design of fault diagnosis observer caused by the uncertain input, and fault diagnosis and fault‐tolerant control are integrated. Two different illustrated examples are given to demonstrate the effectiveness of the proposed algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is concerned with the problem of H fuzzy controller synthesis for a class of discrete‐time nonlinear active fault‐tolerant control systems (AFTCSs) in a stochastic setting. The Takagi and Sugeno (T–S) fuzzy model is employed to exactly represent a nonlinear AFTCS. For this AFTCS, two random processes with Markovian transition characteristics are introduced to model the failure process of system components and the fault detection and isolation (FDI) decision process used to reconfigure the control law, respectively. The random behavior of the FDI process is conditioned on the state of the failure process. A non‐parallel distributed compensation (non‐PDC) scheme is adopted for the design of the fault‐tolerant control laws. The resulting closed‐loop fuzzy system is the one with two Markovian jump parameters. Based on a stochastic fuzzy Lyapunov function (FLF), sufficient conditions for the stochastic stability and H disturbance attenuation of the closed‐loop fuzzy system are first derived. A linear matrix inequality (LMI) approach to the fuzzy control design is then developed. Moreover, a suboptimal fault‐tolerant H fuzzy controller is given in the sense of minimizing the level of disturbance attenuation. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the controller synthesis problem for fault tolerant control systems (FTCS) with stochastic stability and H2 performance is studied. System faults of random nature are modelled by a Markov chain. Because the real system fault modes are not directly accessible in the context of FTCS, the controller is reconfigured based on the output of a fault detection and identification (FDI) process, which is modelled by another Markov chain. Then state feedback and output feedback control are developed to achieve the mean square stability (MSS) and the H2 performance for both continuous‐time and discrete‐time systems with model uncertainties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
具有传输时延的网络控制系统故障估计与调节   总被引:2,自引:1,他引:2  
冒泽慧  姜斌 《自动化学报》2007,33(7):738-743
In this paper, a method of fault estimation and fault tolerant control for networked control system (NCS) with transfer delay and process noise is presented. First, the networked control system is modeled as a multiple-input-multiple-output (MIMO) discrete-time system with transfer delays, process noise, and model uncertainties. Under this model and under some conditions, a fault estimation method is proposed to estimate the system faults. On the basis of the information on fault estimation and the sliding mode control theory, a fault tolerant controller is designed to recover the system performance. Finally, simulation results are used to verify the efficiency of the method.  相似文献   

6.
In this paper,a method of fault estimation and fault tolerant control for networked control system (NCS) with transfer delay and process noise is presented.First,the networked control system is modeled as a multiple-input-multiple-output (MIMO) discrete-time system with transfer delays,process noise,and model uncertainties.Under this model and under some conditions, a fault estimation method is proposed to estimate the system faults.On the basis of the information on fault estimation and the sliding mode control theory,a fault tolerant controller is designed to recover the system performance. Finally, simulation results are used to verify the efficiency of the method.  相似文献   

7.
This article deals with the problem of active fault tolerant control (AFTC) for a class of linear time-delay systems in a finite frequency domain. A new ? controller in generalised internal model control architecture with an observer-based fault estimator is proposed for the AFTC system. Based on online fault estimation and accommodation, the closed-loop system stability and ? performance for both fault free and faulty cases are guaranteed. With the aid of the generalised Kalman–Yakubovich–Popov lemma for time-delay systems, sufficient conditions on the existence of such an AFTC system ensuring simultaneous finite frequency estimation and control performance are derived. The calculation procedure of the parameter matrices of the fault estimator and ? controller is also proposed. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

8.
This article addresses the stochastic fault detection (SFD) problem in finite-frequency domain for a class of networked control systems (NCSs) with respect to signal quantisation and data packet dropout. Considering a logarithmic quantiser and Markovian packet dropout, the NCS is modelled as a Markov jump linear system (MJLS) with quantisation error. Further, a new definition of finite-frequency stochastic H ? index is given, which gives a measurement of sensitivity. Subsequently, sufficient conditions are derived to guarantee that the MJLS can achieve such a performance. By virtue of the obtained conditions, the fault detection filters (FDFs) are designed in finite-frequency domain, which are valid in characterising the disturbance attenuation performance and finite-frequency fault sensitivity performance. Finally, a simulation example is given to illustrate the method and its effectiveness.  相似文献   

9.
Network-induced delay in networked control systems (NCS) is inherent non-uniform distribution and behaves with multifractal nature. However, such network characteristics have not been well considered in the fault detection and isolation of NCS. Making use of those statistical characteristics of NCS network-induced delay, a delay-distribution-based fault detection model is proposed, which is greatly different from the existing Markov switching process model. From this model together with a tighter bounding technique for cross-product terms, a delay-distribution-dependent H fault detection filter is carried out with significantly improved results. A numerical example is given to demonstrate the effectiveness of the proposed method.  相似文献   

10.
In this article, the finite‐time fault tolerant control problem is investigated for a class of discrete‐time stochastic parameter systems subject to censored measurements. For the sake of relieving the communication burden, a stochastic communication protocol governed by a Markov chain is employed to determine which actuator has the access to the network at each transmission instant. Moreover, an improved performance index dependent on the predetermined censored threshold is constructed to evaluate the disturbance rejection level of the fault tolerant controller in the simultaneous presence of both external disturbances and censoring effects. The main aim of the addressed problem is to design a fault tolerant controller such that the closed‐loop system satisfies both the stochastically finite‐time boundedness and H performance requirements. In light of the Lyapunov theory combined with matrix inequalities, some sufficient conditions are derived skillfully, and the desired controller gains are calculated by solving a set of linear matrix inequalities. Finally, two simulation examples are utilized to demonstrate the effectiveness of the developed controller design method.  相似文献   

11.
曹慧超  李炜 《控制与决策》2013,28(12):1874-1883

针对存在时变时延和丢包的不确定网络化控制系统(NCS), 同时考虑执行器饱和、控制器参数摄动以及非线性扰动等约束, 研究执行器发生结构性失效故障时系统的鲁棒容错多约束控制问题. 基于时滞依赖Lyapunov 方法和容错吸引域定义, 采用状态反馈控制策略推证出了闭环故障不确定网络化控制系统稳定的少保守性不变集充分条件, 并给出了非脆弱鲁棒容错控制器的设计方法以及最大容错吸引域的估计. 仿真算例验证了所述方法的可行性和有效性.

  相似文献   

12.
樊金荣  方华京 《控制工程》2013,20(5):859-863
针对网络控制系统中存在的时变采样周期与时延,通过矩阵Jordan 变换与分解, 将采样周期和时延的不确定性转变为系统结构参数的不确定性,建立了离散时间凸多面体不 确定系统模型。在此基础上,首先设计观测器,保证系统状态和故障估计收敛于实际值。接 着,根据估计的故障,设计了主动动态输出反馈鲁棒容错控制器,给出了执行器发生故障时, 系统能保持渐近稳定的充分条件。将控制器设计问题转化为以线性矩阵不等式形式为约束条 件的凸优化问题,进而得出了最优H∞鲁棒容错控制器参数的具体表达式。数值仿真验证了提 出的设计方法的有效性。  相似文献   

13.
This paper is concerned with the H performance analysis for networked control systems with transmission delays and successive packet dropouts under stochastic sampling. The parameter uncertainties are time‐varying norm‐bounded and appear in both the state and input matrices. If packet loss is considered the same as time delay, when models the networked control systems with successive packet dropouts and delays as ordinary linear system with input‐delay approach, due to sampling period is stochastic, then the delay caused by packet losses is a stochastic variable, which leads to difficulties in the stability analysis of the considered system. However, if we can transform the system with stochastic delay into a continuous system with stochastic parameter, we can solve the problem. In this paper, by assuming that the network packet loss rate and employing the information of probabilistic distribution of the time delays, the stochastic sampling system is transformed into a continuous‐time model with stochastic variable, which satisfies a Bernoulli distribution. By linear matrix inequality approach, sufficient conditions are obtained, which guarantee the robust mean‐square exponential stability of the system with an H performance. What's more, an H controller design procedure is then proposed, and a less conservative result is obtained by taking the probability into consideration. Finally, a numerical simulation example is employed to show the effectiveness of the obtained results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The loss of measurements used for controller scheduling or envelope protection in modern flight control systems due to sensor failures leads to a challenging fault‐tolerant control law design problem. In this article, an approach to design such a robust fault‐tolerant control system, including full envelope protections using multiobjective optimization techniques, is proposed. The generic controller design and controller verification problems are derived and solved using novel multiobjective hybrid genetic optimization algorithms. These algorithms combine the multiobjective genetic search strategy with local, single‐objective optimization to improve convergence speed. The proposed strategies are applied to the design of a fault‐tolerant flight control system for a modern civil aircraft. The results of an industrial controller verification and validation campaign using an industrial benchmark simulator are reported.  相似文献   

15.
This paper studies an event‐triggered communication, scheduling, and fault‐tolerant control codesign method for nonlinear networked control systems with medium‐access constraint, delay, and packet disordering using an adaptive approximation method and adaptive technique. By considering nonlinear dynamics and controller reconfiguration, a novel event‐triggering scheme with an adjustable triggering condition and adaptive triggering thresholds is proposed. The stochastic event‐driven actuator scheduling is investigated without the assumption that the controller can access the current modes of the actuators. By considering the Markovian delay and focusing on the transmitter node, a new packet reordering approach is used to cope with packet disordering. This paper proposes an active fault‐tolerant control method, in which the nominal controller is redesigned for the postfault plant by using the fault information provided by an estimator. It is proven that the estimation error of the estimator is uniformly bounded, the reconfigurable controller and event‐trigger ensure the boundedness in probability of the state tracking error before and after the fault occurrence in the presence of medium‐access constraint, delay, and packet disordering while reducing communication load. The effectiveness of the proposed method is demonstrated in the numerical example.  相似文献   

16.
Network induced delay in networked control systems (NCS) is inherently non‐uniformly distributed and behaves with multifractal nature. However, such network characteristics have not been well considered in NCS analysis and synthesis. Making use of the information of the statistical distribution of NCS network induced delay, a delay distribution based stochastic model is adopted to link Quality‐of‐Control and network Quality‐of‐Service for NCS with uncertainties. From this model together with a tighter bounding technology for cross terms, H NCS analysis is carried out with significantly improved stability results. Furthermore, a memoryless H controller is designed to stabilize the NCS and to achieve the prescribed disturbance attenuation level. Numerical examples are given to demonstrate the effectiveness of the proposed method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

17.
18.
This paper focuses on a new H controller design issue for networked control systems with external disturbance as well as random time delays and packet dropouts in forward and feedback channels, which are modeled by multiple Markov chains in a unified style. The output feedback controller is designed to stabilize the networked control system and also achieves the prescribed H disturbance attenuation level. The addressed controller design problem is transformed into a nonlinear minimization problem with LMI constraints. An illustrative example is provided to show the effectiveness of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper proposes an integrated fault estimation and fault‐tolerant control (FTC) design for Lipschitz non‐linear systems subject to uncertainty, disturbance, and actuator/sensor faults. A non‐linear unknown input observer without rank requirement is developed to estimate the system state and fault simultaneously, and based on these estimates an adaptive sliding mode FTC system is constructed. The observer and controller gains are obtained together via H optimization with a single‐step linear matrix inequality (LMI) formulation so as to achieve overall optimal FTC system design. A single‐link manipulator example is given to illustrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the stabilization problem for networked control systems (NCSs) with communication constraint and packet loss. The communication constraint considered is that only one network node is allowed to access a shared communication channel during one time‐slot, and a feedback control is performed with only partially available measurements and control inputs. By taking random packet loss into consideration, a stochastic switched system model is presented to describe the NCS. A sufficient condition is derived for the NCS to be mean‐square exponentially stable, and it is shown that the system performance specified by the exponential decay rate critically depends on the network accessing rates (NARs) of the network nodes and the packet loss probability. The state feedback controller and scheduling protocol, which allocates the NARs, are co‐designed such that the NCS achieves a minimal decay rate. Finally, an illustrative example is given to show the effectiveness of the proposed design approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号