首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
基于Metropolis遗传算法的并联机器人结构优化设计   总被引:1,自引:1,他引:1  
段学超  仇原鹰  段宝岩 《机器人》2006,28(4):433-438
以六自由度Stewart并联机器人的灵巧度为目标函数,以设计空间、每条支腿的最大最小长度之比和虎克铰、球铰的极限摆角为约束条件建立了结构优化模型.将模拟退火算法中的Metropolis准则引入到实值编码遗传算法的选择操作中,产生了Metropolis遗传算法,采用该算法进行了并联机器人结构优化问题的求解.通过与采用标准遗传算法得出的结果比较,证实了Metropolis遗传算法在并联机器人结构优化设计中的有效性和优越性.  相似文献   

2.
Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler–Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links.  相似文献   

3.
This paper presents a new approach to the architecture optimization of a general 3-PUU translational parallel manipulator (TPM) based on the performance of a weighted sum of global dexterity index and a new performance index-space utility ratio (SUR). Both the inverse kinematics and forward kinematics solutions are derived in closed form, and the Jacobian matrix is derived analytically. The manipulator workspace is generated by a numerical searching method with the physical constraints taken into consideration. Simulation results illustrate clearly the necessity to introduce a mixed performance index using space utility ratio for architectural optimization of the manipulator, and the optimization procedure is carried out with the goal of reaching a compromise between the two indices. The analytical results are helpful in designing a general 3-PUU TPM, and the proposed design methodology can also be applied to architectural optimization for other types of parallel manipulators.  相似文献   

4.
This paper proposes an innovative design for a parallel manipulator that can be applied to a machine tool. The proposed parallel manipulator has three degrees of freedom (DOFs), including the rotations of a moving platform about the x and y axes and a translation of this platform along the z-axis. A passive link is introduced into this new parallel manipulator in order to increase the stiffness of the system and eliminate any unexpected motion. Both direct and inverse kinematic problems are investigated, and a dynamic model using a Newton–Euler approach is implemented. The global system stiffness of the proposed parallel manipulator, which considers the compliance of links and joints, is formulated and the kinetostatic analysis is conducted. Finally, a case study is presented to demonstrate the applications of the kinematic and dynamic models and to verify the concept of the new design.  相似文献   

5.
With the development of the parallel manipulator, inertia matching as an essential factor to realize good potentials of the parallel manipulator is taken serious gradually. However, neither definite inertia index nor inertia matching method has been proposed so far. In this paper, the above issues are discussed by taking the Stewart parallel manipulator as a study object. Firstly, adopting limb Jacobian matrices, the concise algebraic expression of the joint–space inertia matrix of the Stewart parallel manipulator is deduced, based on the dynamic modeling. Next, on the basis of the coupling analysis of the joint–space inertia matrix, the inertia index of the parallel manipulator, the Joint-Reflected Inertia, is proposed. Then, the practical inertia matching principles of the Stewart parallel manipulator are concluded on the basis of simulations, considering multiple factors, such as mechanical resonance frequency, acceleration torque and dynamic performance. Finally, the available range of the motor inertia is deduced, and the inertia matching of the Stewart parallel manipulator is finished as the case study. The inertia index and inertia matching method suggested in this paper can be further used in other parallel manipulators for dynamic analysis and motion system design.  相似文献   

6.
A new three-limb, six-degree-of-freedom (DOF) parallel manipulator (PM), termed a selectively actuated PM (SA-PM), is proposed. The end-effector of the manipulator can produce 3-DOF spherical motion, 3-DOF translation, 3-DOF hybrid motion, or complete 6-DOF spatial motion, depending on the types of the actuation (rotary or linear) chosen for the actuators. The manipulator architecture completely decouples translation and rotation of the end-effector for individual control. The structure synthesis of SA-PM is achieved using the line geometry. Singularity analysis shows that the SA-PM is an isotropic translation PM when all the actuators are in linear mode. Because of the decoupled motion structure, a decomposition method is applied for both the displacement analysis and dimension optimization. With the index of maximal workspace satisfying given global conditioning requirements, the geometrical parameters are optimized. As a result, the translational workspace is a cube, and the orientation workspace is nearly unlimited.  相似文献   

7.
This article presents a theoretical and experimental study on structural dynamic response and determination of the joint characteristics of a five degree-of-freedom industrial robot manipulator with a parallel-drive mechanism. The joints were modeled as a linear spring in parallel with a viscous damper while the link members were assumed to be rigid in this study. The dynamic equations of motion of the robot manipulator were derived using the principle of virtual work. Based on these equations, the complex structural characteristics of the manipulator were simplified by carefully arranging the manipulator in proper arm configurations to avoid coupling effects among joints. Hence, the joint stiffness and damping ratio of each joint were determined experimentally. Meanwhile, the dynamic responses of the robot manipulator were also investigated. Good correlation between computer simulations and experimental results was achieved. From the experimental study, an additional troublesome flexural mode of about 10 Hz that tends to dominate the whole dynamic response and influence the positioning accuracy of the manipulator was found due to the weakness of the structural member at the base rotation joint, which was not modeled in the dynamic equations. The results of this study will be useful in providing a basis for improving the design of mechanical components and the articulating members of industrial robot manipulators.  相似文献   

8.
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry   总被引:1,自引:0,他引:1  
This paper presents an optimal design of a parallel manipulator aiming to perform pick-and-place operations at high speed and high acceleration. After reviewing existing architectures of high-speed and high-acceleration parallel manipulators, a new design of a 4-DOF parallel manipulator is presented, with an articulated traveling plate, which is free of internal singularities and is able to achieve high performances. The kinematic and simplified, but realistic, dynamic models are derived and validated on a manipulator prototype. Experimental tests show that this design is able to perform beyond the high targets, i.e., it reaches a speed of 5.5 m/s and an acceleration of 165 m/s2. The experimental prototype was further optimized on the basis of kinematic and dynamic criteria. Once the motors, gear ratio, and several link lengths are determined, a modified design of the articulated traveling plate is proposed in order to reach a better dynamic equilibrium among the four legs of the manipulator. The obtained design is the basis of a commercial product offering the shortest cycle times among all robots available in today's market.  相似文献   

9.
This paper proposes topology design and kinematic optimization of cyclical 5-degree-of-freedom (DoF) parallel manipulator with proper constrained limb. Firstly, a type of cyclical 5-DoF parallel manipulators with proper constrained limb is proposed by analyzing DoF of the proper constrained limb within workspace. Exampled by a cyclical 5-DoF parallel manipulator with the topology 4-UPS&1-RPS, its motion mapping model is formulated. By taking the reciprocal product of a wrench on a twist as the generalized virtual power, the local and global kinematic performance indices are provided. Then, on the basis of the actuated and constrained singularity analysis of the 4-UPS&1-RPS parallel manipulator within the position and pose workspace, the topology design of the manipulator without singularity is carried out, and its reachable and prescribed workspaces are obtained. Finally, by maximizing the global kinematic performance index and subjecting to a set of appropriate constraint conditions, the kinematic optimal design of the 4-UPS&1-RPS parallel manipulator is carried out utilizing the genetic algorithm of MATLAB optimization toolbox.  相似文献   

10.
This paper deals with a methodology of simultaneous optimal design of mechanism and control for completely restrained hybrid-driven based cable parallel manipulators (HDCPM) in order to improve the dynamic performance of the HDCPM system. The HDCPM have the advantages of both the cable parallel manipulator and the hybrid-driven planar five-bar mechanism (HDPM). Kinematics and dynamics of the HDCPM are studied based on closed loop vector, geometric characteristic of mechanism and Lagrange method separately. Following that the integrated optimization model is established based on mechanics analysis and optimum control performance, and a genetic algorithm is used to carry out the optimization solution. As an example, separated optimization design and integrated optimization design for the completely restrained HDCPM with 3 Degrees of Freedom are comparatively investigated on the basis of the above design objectives. Simulation results illustrate that the dynamic performance of the HDCPM system can be significantly improved after integrated optimization design.  相似文献   

11.
In this paper, a planar 2-DOF parallel manipulator with actuation redundancy is proposed and the optimal design considering kinematics and natural frequency is presented. The stiffness matrix and mass matrix are derived, and the structural dynamics is modeled. The natural frequency is obtained on the basis of dynamic model. Based on the kinematic performance, the range for link length is given. Then, considering the natural frequency, the geometry is optimized. The natural frequency is simulated and compared with the corresponding non-redundant parallel manipulator. The designed redundant parallel manipulator has desired kinematic performance and natural frequency and is incorporated into a 4-DOF hybrid machine tool.  相似文献   

12.
In this paper, based on the conventional Newton–Euler approach, a simplification method is proposed to derive the dynamic formulation of a planar 3-DOF parallel manipulator with actuation redundancy. Closed-form solutions are developed for the inverse kinematics. Based on the kinematics, the Newton–Euler approach in simplification form is used to derive the inverse dynamic model of the redundant parallel manipulator. Then, the driving force optimization is performed by minimizing an objective function which is the square of the sum of four driving forces. The dynamic simulations are done for the parallel manipulator with both the redundant and non-redundant actuations. The result shows that the dynamic characteristics of the manipulator in the redundant case are better than that in the non-redundancy. The redundantly actuated parallel manipulator was incorporated into a 4-DOF hybrid machine tool which includes a feed worktable.  相似文献   

13.
《Advanced Robotics》2013,27(9):949-981
In this paper the dynamic analysis of a macro–micro parallel manipulator is studied in detail. The manipulator architecture is a simplified planar version adopted from the structure of the Large Adaptive Reflector (LAR), the Canadian design of next-generation giant radio telescopes. In this structure it is proposed to use two parallel redundant manipulators at the macro and micro level, both actuated by cables. In this paper, the governing dynamic equation of motion of such a structure is derived using the Newton–Euler formulation. Next, the dynamic equations of the system are used in the open-loop inverse dynamics simulations, as well as closed-loop forward dynamics simulations. In the open-loop dynamic simulations it is observed that the inertial forces of the limbs contribute only 10% of the dynamic forces required to generate a typical trajectory and, moreover, the total dynamic forces contribute only 10% of the experimentally measured disturbance forces. Furthermore, in the closed-loop simulations using decentralized PD controllers at the macro and micro levels, it is shown that the macro–micro structure results in a 10 times more accurate positioning than that in the first stage of the macro–micro structure. This convincing result promotes the use of the macro–micro structure for LAR application.  相似文献   

14.
This paper deals with the dynamic modeling and base inertial parameter determination of a general 5R 2-degree-of-freedom spherical parallel manipulator. By using a new geometric approach, inverse and forward kinematic problem are transformed to the problem of determining the intersection of two cones with common vertex. Compared to other proposed methods, this approach yields more compact and closed-form solutions. The instantaneous kinematic and acceleration problem is solved via employing the screw theory. The dynamic model is formulated by means of the principle of virtual work and the concept of link Jacobian matrices. In order to verify the proposed methods and equations, a case study is performed, in which an orthogonal 2-DOF spherical parallel manipulator, named TezGoz, is considered. Performed simulations and comparisons with a SimMechanics model show the correctness of the derived equations. Furthermore, a reduced dynamic model is obtained by determining the base inertial parameters. To do so, first the dynamic model is rewritten in a linear matrix form with respect to the inertial parameters of the mechanism, then parameters are grouped to obtain a set of independent base parameters, reducing the number of inertial parameters from 40 to 19. As a result, while maintaining the accuracy, the computational time is reduced to 63% of that of the original dynamic model. Finally, to calibrate the dynamic model, an experimental dynamic identification is performed.  相似文献   

15.
Redundant actuation can improve the performance and ability of parallel manipulator. In order to deal with coordination and distribution of the driving force of the parallel manipulator with redundant actuation and to realize the control strategy based on dynamics, on the basis of the original 5UPS/PRPU parallel manipulator, it increases a drive for the middle PRPU passive constraint branch to make it a redundant actuation branch. It introduces configurations’ redundant types and compositions of 5UPS/PRPU parallel manipulator with redundant actuation, illustrates that the mechanism is redundant actuation from the perspective of degree of freedom and establishes a dynamic model based on Lagrangian method. On the basis of the weighted optimization principle of driving torque, it optimizes the driving torque of the parallel manipulator and calculates the driving force of the redundant driving chain with cutting force. It carries out the simulation by using ADAMS software and proves validity of dynamic model. Finally it detects the dynamic performance of the parallel manipulator by processing experiment of parallel manipulator with redundant actuation and its non-redundant counterpart.  相似文献   

16.
《Advanced Robotics》2013,27(2-3):235-260
This paper presents the synthesis and design optimization of a compact and yet economical hybrid two-fingered micro–nano manipulator hand. The proposed manipulator hand consists of two series modules, i.e., an upper and lower modules. Each of them consists of a parallel kinematics chain with a glass pipette (1 mm diameter and 3–10 cm length) tapered to a very sharp end as an end-effector. It is driven by three piezo-electric actuated prismatic joints in each of the three legs of the parallel kinematics chain. Each leg of the kinematics chain has the prismatic–revolute–spherical joint structure. As the length of the glass pipette end-effector is decreased, the resolution and accuracy of the micro–nano manipulator hand is increased. For long lengths of the glass pipette end-effector, this manipulator works as a micro manipulator and for short lengths it works as a nano manipulator. A novel closed-form solution for the problem of inverse kinematics is obtained. Based on this solution, a simulation program has been developed to optimally choose the design parameters of each module so that the manipulator will have a maximum workspace volume. A computer-aided design model based on optimal parameters is built and investigated to check its workspace volume. Experimental work has been carried out for the purpose of calibration. Also, the system hardware setup of the hybrid two-fingered micro–nano manipulator hand and its practical Jacobian inverse matrices are presented.  相似文献   

17.
Parallel robotic manipulators are complex mechanical systems that lead to involved kinematic and dynamic equations. Hence, the design of such systems is in general not intuitive, and advanced simulation and design tools specialized for this type of architecture are highly desirable. This article discusses the kinematic simulation and computer-aided design of three-degree-of-freedom spherical parallel manipulators with either prismatic or revolute actuators. The kinematic analysis of spherical parallel manipulators is first reviewed. Solutions for the direct and inverse kinematic problems are given, and the expressions for the singularity loci are then introduced. The determination of the workspace of this type of manipulator is also addressed. Finally, a computer package developed specifically for the CAD of spherical parallel manipulators is presented. This package allows the interactive analysis of manipulators of arbitrary architecture including the representation of the workspace, the representation of singularities, and the graphic animation of trajectories specified either by the direct or the inverse kinematic module. It can be used for the design of any spherical parallel three-degree-of-freedom actuated mechanism, which can find many applications in high-performance robotic systems. © 3995 John Wiley & Sons, Inc.  相似文献   

18.
This paper presents the development of structural dynamic equations of motion for a 3-PRR parallel manipulator with three flexible intermediate links, based on the assumed mode method. Lagrange’s equation is used to derive the dynamic model of the manipulator system. Flexible intermediate links are modeled as Euler–Bernoulli beams with pinned–pinned boundary conditions. Dynamic equations of motion of a 3-PRR parallel manipulator with three flexible links are developed by adopting the assumed mode method. The effect of concentrated rotational inertia at both ends of intermediate links is included in this model. Numerical simulations of vibration responses, coupling forces and inertial forces are presented. The corresponding frequency spectra analysis is performed using the Fast Fourier Transform (FFT). Experimental modal tests are performed to validate the theoretical model through comparison and analysis of modal characteristics of the flexible manipulator system.  相似文献   

19.

This paper proposes a systematic methodology to obtain a closed-form formulation for dynamics analysis of a new design of a fully spherical robot that is called a 3(RSS)-S parallel manipulator with real co-axial actuated shafts. The proposed robot can completely rotate about a vertical axis and can be used in celestial orientation and rehabilitation applications. After describing the robot and its inverse position, velocity and acceleration analysis is performed. Next, based on Kane’s method, a methodology for deriving the dynamical equations of motion is developed. The elaborated approach shows that the inverse dynamics of the manipulator can be reduced to solving a system of three linear equations in three unknowns. Finally, a computational algorithm to solve the inverse dynamics of the manipulator is advised and several trajectories of the moving platform are simulated.

  相似文献   

20.
随着工业自动化水平的提高,工业上对机械手的需求量越来越大。应用欧姆龙NJ系列运动控制器设计两轴并联机械手控制系统。系统由NJ运动控制器、触摸屏、伺服驱动器、伺服电机等硬件组成,NJ控制器通过EtherCAT网络通信进行运动控制,实现了两轴并联机械手的协调动作,达到特定运动轨迹。该控制系统具有响应速度快、定位准确、稳定性强、误差小、调速方便等特点。NJ控制器在运动控制方面表现出极高的优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号