首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
对至少连续满足弱硬实时限制的性质进行了扩充,提出并证明了任务不满足子序列长度与任务连续满足的截止期限数之间的关系.在此基础上提出了改进的弱硬实时限制调度算法:MRA.MRA用于在弱硬实时系统中保证任务满足至少连续满足限制,是一种高效、易于实现的调度算法,仿真实验的结果表明,MRA调度算法在提高任务对限制的满足率和保证任务实时性方面优于同类算法.  相似文献   

2.
Singularity Analysis of Geometric Constraint Systems   总被引:1,自引:0,他引:1       下载免费PDF全文
Singularity analysis in an important subject of the geometric constraint satisfaction problem.In this paper,three kinds of singularities are described and corresponding identifcation methods are presented for both under0constrained systems and over-constrained systems,Another special but common singularity for under-constrained geometric systems,pseudo-singularity,is analyzed.Pseudo-singularity is caused by a variety of constraint mathching of under-constrained systems and can be removed by improving constraint distribution.To avoid pseudo-singularity and decide redundant constraints adaptively,a differentiaiton algorithm is proposed in the paper.Its corrctness and effciency have been validated through its practical applications in a 2D/3D geometric constraint solver CBA.  相似文献   

3.
An Algorithm Based on Tabu Search for Satisfiability Problem   总被引:3,自引:0,他引:3       下载免费PDF全文
In this paper,a computationally effective algorithm based on tabu search for solving the satisfiability problem(TSSAT)is proposed.Some novel and efficient heuristic strategies for generating candidate neighborhood of the curred assignment and selecting varibables to be flipped are presented. Especially,the aspiration criterion and tabu list tructure of TSSAT are different from those of traditional tabu search.Computational experiments on a class of problem insteances show that,TSSAT,in a reasonable amount of computer time ,yields better results than Novelty which is currently among the fastest known.Therefore TSSAT is feasible and effective.  相似文献   

4.
Controller Area Network (CAN) is used extensively in automotive applications, with in excess of 400 million CAN enabled microcontrollers manufactured each year. In 1994 schedulability analysis was developed for CAN, showing how worst-case response times of CAN messages could be calculated and hence guarantees provided that message response times would not exceed their deadlines. This seminal research has been cited in over 200 subsequent papers and transferred to industry in the form of commercial CAN schedulability analysis tools. These tools have been used by a large number of major automotive manufacturers in the design of in-vehicle networks for a wide range of cars, millions of which have been manufactured during the last decade. This paper shows that the original schedulability analysis given for CAN messages is flawed. It may provide guarantees for messages that will in fact miss their deadlines in the worst-case. This paper provides revised analysis resolving the problems with the original approach. Further, it highlights that the priority assignment policy, previously claimed to be optimal for CAN, is not in fact optimal and cites a method of obtaining an optimal priority ordering that is applicable to CAN. The paper discusses the possible impact on commercial CAN systems designed and developed using flawed schedulability analysis and makes recommendations for the revision of CAN schedulability analysis tools. Robert I. Davis received a DPhil in Computer Science from the University of York in 1995. Since then he has founded three start-up companies, all of which have succeeded in transferring real-time systems research into commercial product. At Northern Real-Time Technologies Ltd. (1995–1997) he was responsible for development of the Volcano CAN software library. At LiveDevices Ltd. (1997–2001) he was responsible for development of the Real-Time Architect suite of products, including an OSEK RTOS and schedulability analysis tools. In 2002, Robert returned to the University of York, and in 2004 he was involved in setting up a spin out company, Rapita Systems Ltd., aimed at transferring worst-case execution time analysis technology into industry. Robert is a member of the Real-Time Systems Research Group at the University of York, and a director of Rapita Systems Ltd. His research interests include scheduling algorithms and schedulability analysis for real-time systems. Alan Burns is head of the Real-Time Systems Research Group at the University of York. His research interests cover a number of aspects of real-time systems including the assessment of languages for use in the real-time domain, distributed operating systems, the formal specification of scheduling algorithms and implementation strategies, and the design of dependable user interfaces to real-time applications. He has authored/co-authored over 370 papers and 10 books, with a large proportion of them concentrating on real-time systems and the Ada programming language. Professor Burns has been actively involved in the creation of the Ravenscar Profile, a subset of Ada”s tasking model, designed to enable the analysis of real-time programs and their timing properties. Reinder J. Bril received a B.Sc. and an M.Sc. (both with honours) from the University of Twente, and a Ph.D. from the Technische Universiteit Eindhoven, the Netherlands. He started his professional career in January 1984 at the Delft University of Technology. From May 1985 until August 2004, he was with Philips, and worked in both Philips Research as well as Philips’ Business Units. He worked on various topics, including fault tolerance, formal specifications, software architecture analysis, and dynamic resource management, and in different application domains, e.g. high-volume electronics consumer products and (low volume) professional systems. In September 2004, he made a transfer back to the academic world, to the System Architecture and Networking (SAN) group of the Mathematics and Computer Science department of the Technische Universiteit Eindhoven. His main research interests are currently in the area of reservation-based resource management for networked embedded systems with real-time constraints. Johan J. Lukkien has been head of the System Architecture and Networking Research group at Eindhoven University of Technology since 2002. He received an M.Sc. and a Ph.D. from Groningen University in the Netherlands. In 1991, he joined Eindhoven University, after two years leave at the California Institute of Technology. His research interests include the design and performance analysis of parallel and distributed systems. Until 2000 he was involved in large-scale simulations in physics and chemistry. Since 2000, his research focus has shifted to the application domain of networked resource-constrained embedded systems. Contributions of the SAN group are in the area of component-based middleware for resource-constrained devices, distributed co-ordination, Quality of Service in networked systems and schedulability analysis in real-time systems.  相似文献   

5.
The Non-preemptive Scheduling of Periodic Tasks upon Multiprocessors   总被引:1,自引:0,他引:1  
The non-preemptive scheduling of periodic task systems upon processing platforms comprised of several identical processors is considered. The exact problem has previously been proven intractable even upon single processors; sufficient conditions are presented here for determining whether a given periodic task system will meet all deadlines if scheduled non-preemptively upon a multiprocessor platform using the earliest-deadline first scheduling algorithm. Supported in part by the National Science Foundation (Grant Nos. CCR-9988327 and ITR-0082866). Sanjoy Baruah is a professor of Computer Science at the University of North Carolina at Chapel Hill. He received his Ph.D. from the University of Texas at Austin in 1993. His research and teaching interests are in scheduling theory, real-time and safety-critical system design, and resource-allocation and sharing in distributed computing environments.  相似文献   

6.
In this paper, we address the problem of the dynamic scheduling of skippable periodic task sets (i.e., period tasks allowing occasional skips of instances), together with aperiodic tasks. Scheduling of tasks is handled thanks to the merging of two existing approaches: the Skip-Over task model and the EDL (Earliest Deadline as Late as possible) aperiodic task server. The objective is to provide two on-line scheduling algorithms, namely EDL-RTO and EDL-BWP, in order to minimize the average response time of soft aperiodic requests, while ensuring that the QoS (Quality of Service) of periodic tasks will never be less than a specified bound. We also extend our results to the acceptance of sporadic tasks (i.e., aperiodic tasks with deadlines). We show that these novel scheduling algorithms have better performance compared to related algorithms regarding aperiodic response time and acceptance ratio. Audrey Marchand guaduated in Computer Engineering at the Ecole polytechnique of the University of Nantes (France), in 2002. She is currently a PhD student at the University of Nantes. Her research interests include real-time scheduling theory, aperiodic service mechanisms, quality of service guarantees in soft real-time systems, and Linux-based real-time operating systems and applications. Maryline Chetto received the degree of Docteur de 3ème cycle in control engineering and the degree of Habilitée à Diriger des Recherches in Computer Science from the University of Nantes, France, in 1984 and 1993, respectively. From 1984 to 1985, she held the position of Assistant professor of Computer Science at the University of Rennes, while her research was with the Institut de Recherche en Informatique et Systèmes Aléatoires, Rennes. In 1986, she returned to Nantes and is currently a professor with the Institute of Technology of the University of Nantes. She is conducting her research at IRCCyN. Her main research interests include scheduling and fault-tolerance technologies for real-time applications. She has published more than 60 journal articles and conference papers in the area of real-time operating systems. She is the leader of a French national R&D project, namely Cleopatre, supported by the French government, which aims to provide free open source real-time solutions.  相似文献   

7.
I/O performance of an RAID-10 style parallel file system   总被引:1,自引:0,他引:1       下载免费PDF全文
Without any additional cost, all the disks on the nodes of a cluster can be connected together through CEFT-PVFS, an RAID-10 style parallel file system, to provide a multi-GB/s parallel I/O performance.I/O response time is one of the most important measures of quality of service for a client. When multiple clients submit data-intensive jobs at the same time, the response time experienced by the user is an indicator of the power of the cluster. In this paper, a queuing model is used to analyze in detail the average response time when multiple clients access CEFT-PVFS. The results reveal that response time is with a function of several operational parameters. The results show that I/O response time decreases with the increases in I/O buffer hit rate for read requests, write buffer size for write requests and the number of server nodes in the parallel file system, while the higher the I/O requests arrival rate, the longer the I/O response time. On the other hand, the collective power of a large cluster supported by CEFT-PVFS is shown to be able to sustain a steady and stable I/O response time for a relatively large range of the request arrival rate.  相似文献   

8.
Pre-Scheduling   总被引:1,自引:0,他引:1  
Static scheduling has been well accepted for its predictability and online simplicity. Traditional static schedule generation techniques are usually based on the assumption of constant rate of resource supply known at design time. Under resource composition schemes, however, this assumption may not be valid for a workload to be statically scheduled. A pre-schedule is a static schedule without assuming constant and completely predictable rate of resource supply. In this paper, concepts of supply function and supply contract are introduced to define the actual online resource supply rate and the constraints to this rate known off-line. Based on these concepts, this paper defines the pre-scheduling problem, and presents a sound, complete, and PTIME pre-scheduler.This research is supported partially by grants from the Office of Naval Research under ONR contract N00014-03-1-0705 and the National Science Foundation under NSF grant CCR0207853.Weirong Wang received B.E. in computer engineering from Beijing University of Technology, M.A. and Ph.D. in computer science from the University of Texas at Austin. He is currently an automation engineer in Intel. His research interests include real-time and embedded systems, software engineering and algorithms.Aloysius K. Mok Aloysius K. Mok is Quincy Lee Centennial Professor in Computer Science at the University of Texas at Austin. He received the S.B. in electrical engineering, the S.M. in electrical engineering and computer science and the Ph.D. degrees in computer science, all from the Massachusetts Institute of Technology. Since 1983, Dr. Mok been on the faculty of the Department of Computer Sciences at the University of Texas at Austin. Professor Mok has done extensive research on computer software systems and is internationally known for his work in real-time systems. He is a past Chairman of the Techni- cal Committee on Real-Time Systems of the Institute of Electrical and Electronics Engineers, and has served on numerous national and international research and advisory panels. His current interests include real-time and embed- ded systems, robust and secure network-centric computing and real-time knowledge-based systems. Dr. Mok received in 2002 the IEEE TC on Real-Time Systems Award for his outstanding technical contributions and leadership achievements in real-time systems.Gerhard Fohler is Professor and leader of the predictably flexible real-time systems group at SDL. He received his Ph.D. from Vienna University of Technology in 1994 for research towards flexibility for offline scheduling in the MARS system. He then worked at the University of Massachusetts at Amherst as postdoctoral researcher within the SPRING project. During 1996–97, he was a researcher at Humboldt University Berlin, investigating issues of adaptive reliability and real-time. Gerhard Fohler is currently chairman of the Technical Committee on Real-Time Systems of EUROMICRO.  相似文献   

9.
Feasibility tests for hard real-time systems provide information about the schedulability of the task set. However, this information is a yes or a no answer, that is, whether the task set achieves the test or not. From the real-time system design point of view, having more information available would be useful. For example, how much the computation time can vary without jeopardising the system feasibility. This work specifically provides methods to determine off-line how much a task can increase its computation time, by maintaining the system feasibility under a dynamic priority scheduling. The extra time can be determined not only in all the task activations, but in n of a window of m invocations. This is what we call a window-constrained execution time system. The results presented in this work can be used in all kinds of real-time systems: fault tolerance management, imprecise computation, overrun handling, control applications, etc. Patricia Balbastre is an assistant professor of Computer Engineering. She graduated in Electronic Engineering at the Technical University of Valencia, Spain, in 1998. And the Ph.D. degree in Computer Science at the same university in 2002. Her main research interests include real-time operating systems, dynamic scheduling algorithms and real-time control. Ismael Ripoll received the B.S. degree from the Polytechnic University of Valencia, Spain, in 1992; the Ph.D. degree in Computer Science at the Polytechnic University of Valencia, Spain, in 1996. Currently he is Professor in the DISCA Department of the same University. His research interests include embedded and real-time operating systems. Alfons Crespo is Professor of the Department of Computer Engineering of the Technical University of Valencia. He received the PhD in Computer Science from the Technical University of Valencia, Spain, in 1984. He held the position of Associate professor in 1986 and full Professor in 1991. He leads the group of Industrial Informatics and has been the responsible of several European and Spanish research projects. His main research interest include different aspects of the real-time systems (scheduling, hardware support, scheduling and control integration, …). He has published more than 60 papers in specialised journals and conferences in the area of real-time systems.  相似文献   

10.
This paper investigates the problem of global robust stabilization for a wide class of nonlinear systems, called polynomial lower-triangular form (pLTF), which expands LTF to a more general case. The aim is explicitly constructing the smooth controller for the class of systems with static uncertainties, by adding and modifying a power integrator in a recursive manner. The pLTF relaxes the restrictions on the structure of the normal LTF and enlarges the family of systems that are stabilizable. Examples are also provided to show the practical usage of this class of systems and the effectiveness of the design method. Recommended by Editorial Board member Hyungbo Shim under the direction of Editor Jae Weon Choi. Bing Wang received the B.S. degree from the Huazhong University of Science and Technology, and the Ph.D. degree from the University of Science and Technology of China, in 1998 and 2006, respectively. He is currently working in College of Electrical Engineering, Hohai University. His research interests include robust control, nonlinear control and power systems. Haibo Ji received the B.S. and Ph.D. degrees in Mechanical Engineering from ZheJiang University and Beijing University in 1984 and 1990 respectively. He is currently a Professor in the Dept. of Automation, USTC. His research interests include nonlinear control and adaptive control. Jin Zhu received the B.S. and Ph.D. degrees in Control Science and Engineering from University of Science & Technology of Chinain 2001 and 2006 respectively. He is currently a Post-doc in Han-Yang University, Korea. His research interests include Markovian jump systems and nonlinear control.  相似文献   

11.
This paper presents a vacuum gripper (as an actuator of an intelligent micromanipulator) for micro objects (with a diameter of 100 - 300μm) assembly tasks. The gripper is composed of a vacuum unit and a control unit. The vacuum unit with a proportional valve and a pressure sensor, and the control unit with a PC + MCU two-layered control architecture are designed. The mechanical structure, workflow and major programs of the micro-gripper are presented. This paper discusses the major components of the adhesion force acting on micro objects. Some equations of the operation conditions m three phases of pick, hold and place are derived by mechanics analysis. The pneumatic system's pressure loss is inevitable. There are some formulas for calculating the amount of the pressure loss, but parameters in formulas are diffficult to be quantified and evaluated. To control the working pressure accurately, a pressure controller based on fuzzy logic is designed. With MATLAB's fuzzy logic toolbox, simulation experiments are performed to validate the performance of the fuzzy PD controller. The gripper is characterized by a steady and reliable performance and a simple structure, and it is suitable for handling micro objects with a sub-millimeter size.  相似文献   

12.
Time-constrained service plays an important role in ubiquitous services. However, the resource constraints of ubiquitous computing systems make it difficult to satisfy timing requirements of supported strategies. In this study, we study scheduling strategies for mobile data program with timing constraints in the form of deadlines. Unlike previously proposed scheduling algorithms for mobile systems which aim to minimize the mean access time, our goal is to identify scheduling algorithms for ubiquitous systems that ensure requests meet their deadlines. We present a study of the performance of traditional real-time strategies, and demonstrate that traditional real-time algorithms do not always perform the best in a mobile environment. We propose an efficient scheduling algorithm, called scheduling priority of mobile data with time constraint(SPMT), which is designed for timely delivery of data to mobile clients. The experimental results show that our approach outperforms other approaches over performance criteria.  相似文献   

13.
Real-time tasks are characterized by computational activities with timing constraints and classified into two categories: a hard real-time task and a soft real-time task. In hard real-time tasks, tardiness can be catastrophic. The goal of hard real-time tasks scheduling algorithms is to meet all tasks’ deadlines, in other words, to keep the feasibility of scheduling through admission control. However, in the case of soft real-time tasks, slight violation of deadlines is not so critical.In this paper, we propose a new scheduling algorithm for soft real-time tasks using multiobjective genetic algorithm (moGA) on multiprocessors system. It is assumed that tasks have precedence relations among them and are executed on homogeneous multiprocessor environment.The objective of the proposed scheduling algorithm is to minimize the total tardiness and total number of processors used. For these objectives, this paper combines adaptive weight approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. The effectiveness of the proposed algorithm is shown through simulation studies.  相似文献   

14.
基于对象的分布式实时系统调度模型研究   总被引:2,自引:0,他引:2  
为了解决分布式实时系统有关分配和调度等问题,给出并用形式化方法描述了一种基于对象分布式实时系统调度的通用模型。该模型包括表示时限的绝对时间约束,表示周期属性的周期约束,表示各种前趋关系和同步要求的相对时间约束以及保证资源使用一致性的一致性约束,此外该模型克服了以往模型不能在应用系统的逻辑和功能部件上描述系统实时的约束的不足,允许从方法和活动上描述所需的约束,降低了单一约束描述的繁杂程度,为了能够使用现有调度算法进行任务调度,讨论了约束转换的问题,给出了高层约束到底层约束的转换规则和相应的转换算法。  相似文献   

15.
The design and analysis of real-time scheduling algorithms for safety-critical systems is a challenging problem due to the temporal dependencies among different design constraints. This paper considers scheduling sporadic tasks with three interrelated design constraints: (i) meeting the hard deadlines of application tasks, (ii) providing fault tolerance by executing backups, and (iii) respecting the criticality of each task to facilitate system’s certification. First, a new approach to model mixed-criticality systems from the perspective of fault tolerance is proposed. Second, a uniprocessor fixed-priority scheduling algorithm, called fault-tolerant mixed-criticality (FTMC) scheduling, is designed for the proposed model. The FTMC algorithm executes backups to recover from task errors caused by hardware or software faults. Third, a sufficient schedulability test is derived, when satisfied for a (mixed-criticality) task set, guarantees that all deadlines are met even if backups are executed to recover from errors. Finally, evaluations illustrate the effectiveness of the proposed test.  相似文献   

16.
Peer-to-peer grid computing is an attractive computing paradigm for high throughput applications. However, both volatility due to the autonomy of volunteers (i.e., resource providers) and the heterogeneous properties of volunteers are challenging problems in the scheduling procedure. Therefore, it is necessary to develop a scheduling mechanism that adapts to a dynamic peer-to-peer grid computing environment. In this paper, we propose a Mobile Agent based Adaptive Group Scheduling Mechanism (MAAGSM). The MAAGSM classifies and constructs volunteer groups to perform a scheduling mechanism according to the properties of volunteers such as volunteer autonomy failures, volunteer availability, and volunteering service time. In addition, the MAAGSM exploits a mobile agent technology to adaptively conduct various scheduling, fault tolerance, and replication algorithms suitable for each volunteer group. Furthermore, we demonstrate that the MAAGSM improves performance by evaluating the scheduling mechanism in Korea@Home. SungJin Choi is a Ph.D. student in the Department of Computer Science and Engineering at Korea University. His research interests include mobile agent, peer-to-peer computing, grid computing, and distributed systems. Mr. Choi received a M.S. in computer science from Korea University. He is a student member of the IEEE. MaengSoon Baik is a senior research member at the SAMSUNG SDS Research & Develop Center. His research interests include mobile agent, grid computing, server virtualization, storage virtualization, and utility computing. Dr. Baik received a Ph.D. in computer science from Korea University. JoonMin Gil is a professor in the Department of Computer Science Education at Catholic University of Daegu, Korea. His recent research interests include grid computing, distributed and parallel computing, Internet computing, P2P networks, and wireless networks. Dr. Gil received his Ph.D. in computer science from Korea University. He is a member of the IEEE and the IEICE. SoonYoung Jung is a professor in the Department of Computer Science Education at Korea University. His research interests include grid computing, web-based education systems, database systems, knowledge management systems, and mobile computing. Dr. Jung received his Ph.D. in computer science from Korea University. ChongSun Hwang is a professor in the Department of Computer Science and Engineering at Korea University. His research interests include distributed systems, distributed algorithms, and mobile computing. Dr. Hwang received a Ph.D. in statistics and computer science from the University of Georgia.  相似文献   

17.
Timing constraints for radar tasks are usually specified in terms of the minimum and maximum temporal distance between successive radar dwells. We utilize the idea of feasible intervals for dealing with the temporal distance constraints. In order to increase the freedom that the scheduler can offer a high-level resource manager, we introduce a technique for nesting and interleaving dwells online while accounting for the energy constraint that radar systems need to satisfy. Further, in radar systems, the task set changes frequently and we advocate the use of finite horizon scheduling in order to avoid the pessimism inherent in schedulers that assume a task will execute forever. The combination of feasible intervals and online dwell packing allows modular schedule updates whereby portions of a schedule can be altered without affecting the entire schedule, hence reducing the complexity of the scheduler. Through extensive simulations we validate our claims of providing greater scheduling flexibility without compromising on performance when compared with earlier work based on templates constructed offline. We also evaluate the impact of two parameters in our scheduling approach: the template length (or the extent of dwell nesting and interleaving) and the length of the finite horizon. Sathish Gopalakrishnan is a visting scholar in the Department of Computer Science, University of Illinois at Urbana-Champaign, where he defended his Ph.D. thesis in December 2005. He received an M.S. in Applied Mathematics from the University of Illinois in 2004 and a B.E. in Computer Science and Engineering from the University of Madras in 1999. Sathish’s research interests concern real-time and embedded systems, and the design of large-scale reliable systems. He received the best student paper award for his work on radar dwell scheduling at the Real-Time Systems Symposium 2004. Marco Caccamo graduated in computer engineering from the University of Pisa in 1997 and received the Ph.D. degree in computer engineering from the Scuola Superiore S. Anna in 2002. He is an Assistant Professor of the Department of Computer Science at the University of Illinois. His research interests include real-time operating systems, real-time scheduling and resource management, wireless sensor networks, and quality of service control in next generation digital infrastructures. He is recipient of the NSF CAREER Award (2003). He is a member of ACM and IEEE. Chi-Sheng Shih is currently an assistant professor at the Graduate Institute of Networking and Multimedia and Department of Computer Science and Information Engineering at National Taiwan University since February 2004. He received the B.S. in Engineering Science and M.S. in Computer Science from National Cheng Kung University in 1993 and 1995, respectively. In 2003, he received his Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign. His main research interests are embedded systems, hardware/software codesign, real-time systems, and database systems. Specifically, his main research interests focus on real-time operating systems, real-time scheduling theory, embedded software, and software/hardware co-design for system-on-a-chip. Chang-Gun Lee received the B.S., M.S. and Ph.D. degrees in computer engineering from Seoul National University, Korea, in 1991, 1993 and 1998, respectively. He is currently an Assistant Professor in the Department of Electrical Engineering, Ohio State University, Columbus. Previously, he was a Research Scientist in the Department of Computer Science, University of Illinois at Urbana-Champaign from March 2000 to July 2002 and a Research Engineer in the Advanced Telecomm. Research Lab., LG Information & Communications, Ltd. from March 1998 to February 2000. His current research interests include real-time systems, complex embedded systems, QoS management, and wireless ad-hoc networks. Chang-Gun Lee is a member of the IEEE Computer Society. Lui Sha graduated with the Ph.D. degree from Carnegie-Mellon University in 1985. He was a Member and then a Senior Member of Technical Staff at Software Engineering Institute (SEI) from 1986 to 1998. Since Fall 1998, he has been a Professor of Computer Science at the University of Illinois at Urbana Champaign, and a Visiting Scientist of the SEI. He was the Chair of IEEE Real Time Systems Technical Committee from 1999 to 2000, and has served on its Executive Committee since 2001. He was a member of National Academy of Science’s study group on Software Dependability and Certification from 2004 to 2005, and is an IEEE Distinguished Visitor (2005 to 2007). Lui Sha is a Fellow of the IEEE and the ACM.  相似文献   

18.
A Novel Computer Architecture to Prevent Destruction by Viruses   总被引:1,自引:0,他引:1       下载免费PDF全文
In today‘s Internet computing world,illegal activities by crackers pose a serious threat to computer security.It is well known that computer viruses,Trojan horses and other intrusive programs may cause sever and often catastrophic consequences. This paper proposes a novel secure computer architecture based on security-code.Every instruction/data word is added with a security-code denoting its security level.External programs and data are automatically addoed with security-code by hadware when entering a computer system.Instruction with lower security-code cannot run or process instruction/data with higher security level.Security-code cannot be modified by normal instruction.With minor hardware overhead,then new architecture can effectively protect the main computer system from destruction or theft by intrusive programs such as computer viruses.For most PC systems it includes an increase of word-length by 1 bit on register,the memory and the hard disk.  相似文献   

19.
Meeting scheduling (MS) represents an important real-world group decision application that denotes one of the actual combinatorial problems. Solving this problem consists of scheduling all the meetings while satisfying all the constraints related to both the users and the meetings. However, given human nature, the solution is usually delineated by the encountering of conflicting preferences. Most of existing research efforts allow the relaxation of the users' preferences in order to reach an agreement between all the participants, which is not always possible. In addition, they do not deal with the achievement of any level of local consistency to enhance the efficiency of the solving process, and finally, they do not address the real difficulty of distributed systems, which is the complexity of message passing operations. Here we propose a new approach to facilitate and streamline the scheduling meetings process in any organization. This approach is based on the distributed reinforcement of arc consistency model, which takes into account the difficulties mentioned above. The present work focuses mainly on satisfying meetings hosts' preferences as much as possible, while taking into consideration all users' availability. The underlying selfish protocol is able to efficiently reach the best solution for the host of the meeting (according to the predefined criteria) whenever possible. This process is achieved with the minimal number of exchanged messages and while retaining as much of the privacy of the involved users as possible. An experimental comparative analysis divulges that our approach is scalable and worthwhile especially for strong constraints. Ahlem Ben Hassine received a B.S and M.S. degrees from the High Institute of Management of Tunis (ISG), in 1996 and 1999. She received her PhD degree in 2005 from the School of Knowledge Science at the Japan Advanced Institute of Science and Technology (JAIST). Her main research interests include artificial intelligence mainly for solving complex problems, constraint satisfaction problems, multi-agent systems, meeting scheduling problems. Takayuki Ito received a B.Eng., M.S., and PhD degrees from Nagoya Institute of Technology (NIT) in 1995, 1997 and 2000. He is an Associate Professor at the Graduate School of Engineering, NIT. His research interests include computational mechanism design, auction, agent-mediated electronic commerce, multi-agent negotiation, agent-based Tu Bao Ho received a B. Eng. degree from Hanoi University of Technology in 1978, M.S. and PhD. Degrees from University Paris 6, in 1984 and 1987, a Habilitation diploma in 1998 from University Paris Dauphine. He is currently a professor at School of Knowledge Science, Japan Advanced Institute of Science and Technology (JAIST). His research interests include artificial intelligence, machine learning, knowledge based systems, knowledge discovery and data mining.  相似文献   

20.
We propose a new encryption algorithm relying on reversible cellular automata (CA). The behavior complexity of CA and their parallel nature makes them interesting candidates for cryptography. The proposed algorithm belongs to the class of symmetric key systems. Marcin Seredynski: He is a Ph.D. student at University of Luxembourg and Polish Academy of Sciences. He received his M.S. in 2004 from Faculty of Electronics and Information Technology in Warsaw University of Technology. His research interests include cryptography, cellular automata, nature inspired algorithms and network security. Currently he is working on intrusion detection algorithms for ad-hoc networks. Pascal Bouvry, Ph.D.: He earned his undergraduate degree in Economical & Social Sciences and his Master degree in Computer Science with distinction (’91) from the University of Namur, Belgium. He went on to obtain his Ph.D. degree (’94) in Computer Science with great distinction at the University of Grenoble (INPG), France. His research at the IMAG laboratory focussed on Mapping and scheduling task graphs onto Distributed Memory Parallel Computers. Next, he performed post-doctoral researches on coordination languages and multi-agent evolutionary computing at CWI in Amsterdam. He gained industrial experience as manager of the technology consultant team for FICS in the banking sector (Brussels, Belgium). Next, he worked as CEO and CTO of SDC (Ho Chi Minh city, Vietnam) in the telecom, semi-conductor and space industry. After that, He moved to Montreal Canada as VP Production of Lat45 and Development Director for MetaSolv Software in the telecom industry. He is currently serving as Professor in the group of Computer Science and Communications (CSC) of the Faculty of Sciences, Technology and Communications of Luxembourg University and he is heading the Intelligent & Adaptive Systems lab. His current research interests include: ad-hoc networks & grid-computing, evolutionary algorithms and multi-agent systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号