首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
A control synthesis problem for a wheeled robot moving on uneven terrain is studied. The terrain is assumed to be described by a sufficiently smooth function that does not vary too much at distances of the order of the platform size, which makes it possible to employ a planar robot model. The terrain model is not a priori known, and the information on the local terrain configuration is made available for the robot through measuring its pitch and roll angles. The control goal is to bring the robot to a given curvilinear path and to stabilize robot’s motion along it. A change of variables is found by means of which the system of differential equations governing controlled motion of the robot reduces to the form that admits feedback linearization. A numerical example presented demonstrates advantages of the synthesized control compared to that derived without regard to the terrain unevenness. It is shown that the latter is generally not capable of stabilizing robot’s motion with a desired accuracy.  相似文献   

2.
The path following problem for a car-like robot is considered. The control goal is to bring the robot to a pre-assigned curvilinear path and to stabilize its motion along the path. A new canonical change of variables is suggested. It reduces the problem of stabilizing robot’s motion to that of stability of the zero solution of the transformed system in the form that admits feedback linearization. A new control law is synthesized that ensures linearity of the closed-loop system and stabilizes robot’s motion along a given target path if the initial conditions belong to a known region. Comparison of the new control law with two earlier obtained linearizing feedbacks known from the literature demonstrates its unquestionable advantages.  相似文献   

3.
A control synthesis problem for planar motion of a wheeled robot with regard to the steering gear dynamics is considered. The control goal is to bring the robot to a given curvilinear path and to stabilize its motion along the path. The trajectory is assumed to be an arbitrary parameterized smooth curve satisfying some additional curvature constraints. A change of variables is found by means of which the system of differential equations governing controlled motion of the robot reduces to the form that admits feedback linearization. A control law is synthesized for an arbitrary target path with regard to phase and control constraints. The form of the boundary manifold and the phase portrait of the system for the case of the straight target trajectory are studied. Results of numerical experiments are presented.  相似文献   

4.
A mathematical model of the motion of a vibration-driven robot on a vertical metallic surface due to an adhesive electromagnetic device and rotation of unbalanced masses built into the robot’s body is constructed. The motion principle is described in detail and a design scheme of the robot is presented. As a result of computational experiments, the laws of the robot’s motion are established. The parameters that most affect the motion are determined.  相似文献   

5.
The synthesis control problem for the plane motion of a wheeled robot is studied. The goal of the control is to bring the robot to an assigned curvilinear trajectory and to stabilize its motion along it in the presence of phase and control constraints. For a synthesized control law, invariant ellipsoids—quadratic approximations of the attraction domains of the target trajectory—are constructed, which allow one to check in the course of the robot motion whether the control law can stabilize motion along the current trajectory segment. To take into account constraints on the control, methods of absolute stability theory are applied. The construction of the invariant ellipsoids reduces to solving a system of linear matrix inequalities.  相似文献   

6.
The synthesis control problem for the plane motion of a wheeled robot with constrained control resource is studied. The goal of the control is to bring the robot to an assigned curvilinear trajectory and to stabilize its motion along it. For a synthesized control law, the problem of finding the best in the sense of volume ellipsoidal approximation of the attraction domain of the target path is posed. To take into account constraints on the control, an approach based on methods of absolute stability theory is used, in the framework of which construction of an approximating ellipsoid reduces to solving a system of linear matrix inequalities. It is shown that the desired maximum-volume approximating ellipsoid can be found by solving a standard constrained optimization problem for a function of two variables.  相似文献   

7.
The first objective of this research was to develop an omnidirectional home care mobile robot. A PC-based controller controls the mobile robot platform. This service mobile robot is equipped with an “indoor positioning system” and an obstacle avoidance system. The indoor positioning system is used for rapid and precise positioning and guidance of the mobile robot. The obstacle avoidance system can detect static and dynamic obstacles. In order to understand the stability of a three-wheeled omnidirectional mobile robot, we carried out some experiments to measure the rectangular and circular path errors of the proposed mobile robot in this research. From the experimental results, we found that the path error was smaller with the guidance of the localization system. The mobile robot can also return to its starting point. The localization system can successfully maintain the robot’s heading angle along a circular path.  相似文献   

8.
This work deals with motion planning algorithms of an omni-directional mobile robot with active caster wheels. A typical problem occurred in the motion control of such omni-directional mobile robot, which has been identified through experimental experiences, is skidding of the mobile wheel. It sometimes results in uncertain rotation of the steering wheel. To cope with this problem, a motion planning algorithm which resolves the skidding problem and uncertain motions of the steering wheel is mainly investigated. For navigation of the mobile robot, the posture of the omni-directional mobile robot is initially calculated using the odometry information. Then, the accuracy of the mobile robot’s odometry is measured through comparison of the odometry information and the external sensor measurement. Finally, for successful navigation of the mobile robot, a motion planning algorithm that employs kinematic redundancy resolution method is proposed. Through simulations and experimentation, the feasibility of proposed algorithms was verified.  相似文献   

9.
This paper presents methodologies and techniques for posture estimation and tracking of an autonomous mobile robot (AMR) using a laser scanner with at least three retro-reflectors. A three-point laser triangulation method is presented to find an initial posture of the robot and then a fuzzy extended information filtering (FEIF) method is used to improve the accuracy of the robot’s posture estimation. With the odometric information from the driving wheels, a FEIF-based posture tracking algorithm is proposed to continuously keep trace of the robot’s posture at slow speeds. Simulation and experimental results are conducted to show the efficacy and usefulness of the proposed methods.  相似文献   

10.
Design of the control law for planar motion of the wheeled robot was studied. The aim of control lies in driving the robot to the desired smooth curvilinear trajectory and stabilizing its motion. At that, the control resource and the domain of variations of the phase variables are bounded. It was previously suggested to construct the criterion for control law stabilizability as invariant ellipsoids, that is, quadratic approximations of the attraction domains of the target trajectory. Then construction of the invariant ellipsoids came to solving a system of linear matrix inequalities and testing a scalar inequality. The paper was devoted to practical application of the previous results. Choice of the parameters of the system of linear matrix inequalities was discussed. An algorithm to construct an invariant ellipsoid in at most three iterations was developed. It also determines the maximal ellipsoid for a given maximal permissible deviation of the robot from the target trajectory.  相似文献   

11.
This article proposes a method for adapting a robot’s perception of fuzzy linguistic information by evaluating vocal cues. The robot’s perception of fuzzy linguistic information such as “very little” depends on the environmental arrangements and the user’s expectations. Therefore, the robot’s perception of the corresponding environment is modified by acquiring the user’s perception through vocal cues. Fuzzy linguistic information related to primitive movements is evaluated by a behavior evaluation network (BEN). A vocal cue evaluation system (VCES) is used to evaluate the vocal cues for modifying the BEN. The user’s satisfactory level for the robot’s movements and the user’s willingness to change the robot’s perception are identified based on a series of vocal cues to improve the adaptation process. A situation of cooperative rearrangement of the user’s working space is used to illustrate the proposed system by a PA-10 robot manipulator.  相似文献   

12.
In order to satisfy need for enhanced user affinity for robots, we are attempting to give robots a “consciousness” such as that identified in humans and animals. We developed software to control a robot’s actions including emotion by introducing the evaluation function of action choice into the hierarchical structure model. This connected the robot’s consciousness with the robot’s action. We named the process Consciousness-based Architecture (CBA). However, it is difficult to change the consciousness of the robot only using this CBA model. In order to induce and change autonomously consciousness and action for the robot, some motivation is required. Therefore, a motivation model has been developed to induce and change autonomously, and is combined with CBA. To inspect CBA including the motivation model, a robot arm (Conbe-I) has been developed with a small Web camera built into the fingers. CBA was installed on this Conbe-I, and the autonomous actions performed to catch an object were inspected. A motivation model of the robot was devised to describe interests for the aim thing of the robot and the desire of the robot. To build this motivation model, we studied the action of dopamine, which added activity to the robot, in conjunction with the incentive to do an action. In this paper described about the expression of the emotion by a robot incorporated this motivation model in Conbe-I. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

13.
Conventional robot motion teaching methods use a teaching pendant or a motion capture device and are not the most convenient or intuitive ways to teach a robot sophisticated and fluid movements such as martial arts motions. Ideally, a robot could be set up as if it were a clothing mannequin that has light limbs and flexible yet frictional joints which can be positioned at desirable shape and hold all the positions. To do the same with a robot, an operator could pull or push the links with minor forces until the desired robot posture is attained. For this, a robot should measure the applied external force by using torque sensors at the robot joints. However, torque sensors are bulky and expensive to install in every DOF joints while keeping a compact design, which is essential to humanoid robots. In this paper, we use only motor current readings to acquire joint torques. The equations used to compensate for the effect of gravity on the joint torques and the self-calibration method to earn link parameters are presented. Additionally, kinematic restrictions can be imposed on the robot’s arms to simplify the motion teaching. Here, we teach the Kendo training robot with this method and the robot’s learnt martial art motions are demonstrated.  相似文献   

14.
A real-time hybrid control architecture for biped humanoid robots is proposed. The architecture is modular and hierarchical. The main robot’s functionalities are organized in four parallel modules: perception, actuation, world-modeling, and hybrid control. Hybrid control is divided in three behavior-based hierarchical layers: the planning layer, the deliberative layer, and the reactive layer, which work in parallel and have very different response speeds and planning capabilities. The architecture allows: (1) the coordination of multiple robots and the execution of group behaviors without disturbing the robot’s reactivity and responsivity, which is very relevant for biped humanoid robots whose gait control requires real-time processing. (2) The straightforward management of the robot’s resources using resource multiplexers. (3) The integration of active vision mechanisms in the reactive layer under control of behavior-dependant value functions from the deliberative layer. This adds flexibility in the implementation of complex functionalities, such as the ones required for playing soccer in robot teams. The architecture is validated using simulated and real Nao humanoid robots. Passive and active behaviors are tested in simulated and real robot soccer setups. In addition, the ability to execute group behaviors in real- time is tested in international robot soccer competitions.  相似文献   

15.
In this paper, a control scheme that combines a kinematic controller and a sliding mode dynamic controller with external disturbances is proposed for an automatic guided vehicle to track a desired trajectory with a specified constant velocity. It provides a method of taking into account specific mobile robot dynamics to convert desired velocity control inputs into torques for the actual mobile robot. First, velocity control inputs are designed for the kinematic controller to make the tracking error vector asymptotically stable. Then, a sliding mode dynamic controller is designed such that the mobile robot’s velocities converge to the velocity control inputs. The control law is obtained based on the backstepping technique. System stability is proved using the Lyapunov stability theory. In addition, a scheme for measuring the errors using a USB camera is described. The simulation and experimental results are presented to illustrate the effectiveness of the proposed controller.  相似文献   

16.
In this article, we propose a localization scheme for a mobile robot based on the distance between the robot and moving objects. This method combines the distance data obtained from ultrasonic sensors in a mobile robot, and estimates the location of the mobile robot and the moving object. The movement of the object is detected by a combination of data and the object’s estimated position. Then, the mobile robot’s location is derived from the a priori known initial state. We use kinematic modeling that represents the movement of a robot and an object. A Kalman-filtering algorithm is used for addressing estimation error and measurement noise. Throughout the computer simulation experiments, the performance is verified. Finally, the results of experiments are presented and discussed. The proposed approach allows a mobile robot to seek its own position in a weakly structured environment. This work was presented in part at the 12th International Symposium on Artificial Life and Robotics, Oita, Japan, January 25–27, 2007  相似文献   

17.
In this paper, an interpolation-based path planning algorithm is employed for generating smooth paths on uniform resolution grid-maps. First, it starts at the goal node and propagates through four neighboring nodes, assigning monotonically increasing values to nodes using FMM (Fast Marching Method) interpolation. Consequently, we obtain a goal-propagation map that is zero-cost at the goal node and monotonically increasing along the wavefront propagation from the goal node. Subsequently, it begins from the robot’s position and uses a linear interpolation approach to generate nearoptimal paths. After obtaining the planned path, an improved path following algorithm based on an improved virtual vehicle method is employed to follow the path considering the robot’s dynamic and kinematic constraints. The experimental results demonstrate the performance of our approach.  相似文献   

18.
In this paper, the leader-waypoint-follower formation is constructed based on relative motion states of nonholonomic mobile robots. Since the robots’ velocities are constrained, we proposed a geometrical waypoint in cone method so that the follower robots move to their desired waypoints effectively. In order to form and maintain the formation of multi-robots, we combine stable tracking control method with receding horizon (RH) tracking control method. The stable tracking control method aims to make the robot’s state errors stable and the RH tracking control method guarantees that the convergence of the state errors tends toward zero efficiently. Based on the methods mentioned above, the mobile robots formation can be maintained in any trajectory such as a straight line, a circle or a sinusoid. The simulation results based on the proposed approaches show each follower robot can move to its waypoint efficiently. To validate the proposed methods, we do the experiments with nonholonomic robots using only limited on-board sensor information.  相似文献   

19.
This paper introduces an optimal capture strategy for a manipulator based on a servicing spacecraft to approach an arbitrarily rotating object, such as a malfunctioning satellite or a piece of orbital debris, for capturing with minimal impact to the robot’s base spacecraft. The method consists of two steps. The first step is to determine an optimal future time and the target object’s corresponding motion state for the robot to capture the tumbling object, so that, at the time when the gripper of the robot intercepts the target the very first instant, the resulting impact or disturbance to the attitude of the base spacecraft will be minimal. The second step is to control the robot to reach the tumbling object at the predicted optimal time along an optimal trajectory. The optimal control problem is solved with random uncertainties in the initial and final boundary conditions. Uncertainties are introduced because sensor and estimation errors inevitably exist in the first step, i.e., determination process of the initial and final boundary conditions. The application of the method is demonstrated using a dynamics simulation example.  相似文献   

20.
针对欠驱动两杆体操机器人Acrobot, 提出一种新的稳定控制方法.首先,通过利用一个虚拟摩擦力矩为Acrobot 构造一条下摆轨迹;然后,运用倒转的思想为它设计出一条由垂直向下位置到垂直向上位置的期望运动轨迹, 并以此将系统的稳定控制问题转化为跟踪控制问题;最后, 基于最优控制理论来设计跟踪控制器,使Acrobot 能够沿期望轨迹渐近稳定在垂直向上位置处. 仿真结果验证了所提方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号