首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
《Advanced Robotics》2013,27(6):737-762
Latest advances in hardware technology and state-of-the-art of mobile robots and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. A mobile service robot requires the perception of its present position to co-exist with humans and support humans effectively in populated environments. To realize this, a robot needs to keep track of relevant changes in the environment. This paper proposes localization of a mobile robot using images recognized by distributed intelligent networked devices in intelligent space (ISpace) in order to achieve these goals. This scheme combines data from the observed position, using dead-reckoning sensors, and the estimated position, using images of moving objects, such as a walking human captured by a camera system, to determine the location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the ISpace. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates for a moving object and the estimated robot's position are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used for the estimation of the mobile robot location. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in determining the location of a mobile robot, and its performance is verified by computer simulation and experiment.  相似文献   

2.
A real-time object tracking and collision avoidance method is presented for mobile robot navigation in indoors environments using stereo vision and a laser sensor. Stereo vision is used to identify the target and to calculate its relative distance from the mobile robot while laser based range measurements are utilized to avoid collision with surrounding objects. The target is tracked by its predetermined or dynamically defined color. The mobile robot’s velocity is dynamically adjusted according to its distance from the target. Experimental results in indoor environments demonstrate the effectiveness of the method.  相似文献   

3.
A vision-based scheme for object recognition and transport with a mobile robot is proposed in this paper. First, camera calibration is experimentally performed with Zhenyou Zhang’s method, and a distance measurement method with the monocular camera is presented and tested. Second, Kalman filtering algorithm is used to predict the movement of a target with HSI model as the input and the seed filling algorithm as the image segmentation approach. Finally, the motion control of the pan-tilt camera and mobile robot is designed to fulfill the tracking and transport task. The experiment results demonstrate the robust object recognition and fast tracking capabilities of the proposed scheme.  相似文献   

4.
The following study deals with motion optimization of robot arms having to transfer mobile objects grasped when moving. This approach is aimed at performing repetitive transfer tasks at a rapid rate without interrupting the dynamics of both the manipulator and the moving object. The junction location of the robot gripper with the object, together with grasp conditions, are partly defined by a set of local constraints. Thus, optimizing the robot motion in the approach phase of the transfer task leads to the statement of an optimal junction problem between the robot and the moving object. This optimal control problem is characterized by constrained final state and unknown traveling time. In such a case, Pontryagin"s maximum principle is a powerful mathematical tool for solving this optimization problem. Three simulated results of removing a mobile object on a conveyor belt are presented; the object is grasped in motion by a planar three-link manipulator.  相似文献   

5.
6.
In cases where a wheeled mobile robot runs fast on a rough surface, the sensors mounted on the robot’s body may be destroyed due to the body acceleration and oscillation. In this article, we propose a new scheme to reduce the body acceleration at any specified location for mobile robots with the actuators set on the wheel axes. To achieve this, a combined ideal robot model is designed. In the combined ideal robot model, the location where the acceleration performance is at its best can easily be moved by setting only two design parameters. Next, a robust model tracking controller is developed so that the behavior of an actual mobile robot can track the combined ideal robot model. The developed controller has the following useful properties. (1) The body acceleration at any specified location can easily be improved. (2) The developed controller has good robustness for uncertainties in robot mass, pitch and roll moment of inertia of the robot’s body, and the position of the center of gravity.  相似文献   

7.
This paper presents a cost-efficient, real-time vision-sensor system for identifying, locating and tracking objects that are unknown and randomly placed on a moving conveyor belt. The visual information obtained from a conventional frame-store unit and an end-effector based proximity sensor outputs are incorporated in a fuzzy-logic control algorithm to make the robotic manipulator grasp moving objects. The robot movements are going to be the result of the comparative measurements made by the sensors after the motion of the moving target is predicted and the gripper is brought into a zone close to the object to be grasped by the application of a vision system. The mobile object is traced by controlling the motion of the end-effector with an end-effector based infrared proximity sensors and conveyor position encoder by keeping the gripper's axis to pass through a median plane of the moving object. With this procedure and using the fuzzy-logic control, the system is adapted to pursue of a mobile object. Laboratory experiments are presented to demonstrate the performance of this system. ©1999 John Wiley & Sons, Inc.  相似文献   

8.
The tracking of a moving object with a mobile robot has been implemented based on the detected sound from the moving object using a microphone array. The difference between the travel times of the sound source to each of the three microphones mounted to the robot has been used to calculate the distance and orientation of the sound source. The cross-correlations between the received signals have been used to detect the individual sound signal from the object and to calculate the time difference between two signals. This provides reliable and precise time differences among the sound signals arrived at the microphones compared to the conventional method. In order to determine the tracking direction to the sound source, Fuzzy rules have been applied; the results are used for real-time control of the mobile robot. The efficiency of the proposed algorithm has been demonstrated through real-world experiments and compared to the conventional approach.  相似文献   

9.
在动态背景下的运动目标检测中,由于目标和背景两者都是各自独立运动的,在提取前景运动目标时需要考虑由移动机器人自身运动引起的背景变化。仿射变换是一种广泛用于估计图像间背景变换的方法。然而,在移动机器人上使用全方位视觉传感器(ODVS)时,由于全方位图像的扭曲变形会 造成图像中背景运动不一致,无法通过单一的仿射变换描述全方位图像上的背景运动。将图像划分为网格窗口,然后对每个窗口分别进行仿射变换,从背景变换补偿帧差中得到运动目标的区域。最后,根据ODVS的成像特性,通过视觉方法解析出运动障碍物的距离和方位信息。实验结果表明,提出的方法能准确检测出移动机器人360°范围内的运动障碍物,并实现运动障碍物的精确定位,有效地提高了移动机器人的实时避障能力。  相似文献   

10.
A virtual target tracking approach is proposed for kinematic control of mobile robot. In the controller, linear and angular velocity inputs are generated by using the local data of robot position and orientation along with the estimated velocity of target object. Applying the proposed approach to a cooperative robot group with arbitrary number of multiple mobile robots, it is possible to create various robot formations for cooperative navigation and tracking of moving object. The developed controller is shown to be stable and convergent through theoretical proof and a series of experiments.  相似文献   

11.
In this article, a new desktop orthogonal-type robot, which has the capacity of stick-slip motion control based on cutter location data, is presented for lapping small metallic molds with a curved surface. The robot consists of three single-axis devices with a high position resolution of 1 μm. A thin wooden stick tool with a ball-end shape is attached to the tip of the z-axis. In order to improve the lapping performance, a novel stick-slip motion control method is developed in the control system. The small stick-slip motion is orthogonally generated in the direction of the tool’s movement. The effectiveness of stick-slip motion control is examined through an actual lapping test of an LED lens cavity.  相似文献   

12.
We are attempting to develop an autonomous personal robot that has the ability to perform practical tasks in a human living environment by using information derived from sensors. When a robot operates in a human environment, the issue of safety must be considered in regard to its autonomous movement. Thus, robots absolutely require systems that can recognize the external world and perform correct driving control. We have thus developed a navigation system for an autonomous robot. The system requires only image data captured by an ocellus CCD camera. In this system, we allow the robot to search for obstacles present on the floor. Then, the robot obtains distance recognition necessary for evasion of the object, including data of the obstacle’s width, height, and depth by calculating the angles of images taken by the CCD camera. We applied the system to a robot in an indoor environment and evaluated its performance, and we consider the resulting problems in the discussion of our experimental results. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

13.
Optimal representative blocks are proposed for an efficient tracking of a moving object and it is verified experimentally by using a mobile robot with a pan‐tilt camera. The key idea comes from the fact that when the image size of a moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by shrinking the size of representative blocks according to the object image size. Motion estimation using edge detection (ED) and block‐matching algorithm (BMA) are often used in the case of moving object tracking by vision sensors. However, these methods often miss the real‐time vision data since these schemes suffer from the heavy computational load. To overcome this problem and to improve the tracking performance, the optimal representative block that can reduce a lot of data to be computed is defined and optimized by changing the size of the representative block according to the size of object in the image frame. The proposed algorithm is verified experimentally by using a mobile robot with a two degree‐of‐freedom active camera. © 2004 Wiley Periodicals, Inc.  相似文献   

14.
The results of experiments in realtime tracking of a moving object using wrist mounted laser range finders are presented. The objective is to have the robot endeffector maintain a constant pose with respect to a flat object moving in three-dimensional space in the field of view of the range finders. Tracking is done with maximum linear and angular speeds of the target object being 25 cm/s and 0.5 rad/s, respectively. The software is designed to ensure that the robot has smooth motion, without any sharp discontinuities. A performance study of the tracking experiment is presented.NRC #33164  相似文献   

15.
1 引言现有的数据库系统一般假设数据在未被显式修改前是不变的,例如:如果字段salary的值是30.000,那么只有通过事务更新才会改变该字段的值。但对连续变化的对象,如移动对象的位置,应用传统的数据库管理系统来管理会造成两种结果:或者移动对象位置的频繁更新占用大量的系统资源;或者使用移动对象过时的位置信息而导致错误的决策。  相似文献   

16.
This paper presents a direction detection and tracking object color update algorithm used to track moving objects that change colors. Different from traditional color-based tracking methods, which use an initial color distribution in order to track objects as long as the object carries the full or partial initial color, this method introduces a color update method used to quickly find the new object color in a new location if the object changes its color partially or completely; the updated color is then used to locate the object. In our algorithm, an initial color pattern is used to track an object using the color. During the tracking, an object’s new location is at first estimated and then used to detect any color change. If the color has changed, a new color pattern is updated based on the changes in the previous color distribution, and then the new color pattern is used to calculate the current location of the object. This algorithm utilizes the property that the movement of an object can be estimated either by using the object’s shadow or by background subtraction. The implementation of our algorithm results in an effective real-time object tracking. The validity of the approach is illustrated by the presentation of experiment results obtained using the methods described in this paper.  相似文献   

17.
Efficient real-time trajectory tracking   总被引:1,自引:0,他引:1  
Moving objects databases (MOD) manage trajectory information of vehicles, animals, and other mobile objects. A crucial problem is how to efficiently track an object’s trajectory in real-time, in particular if the trajectory data is sensed at the mobile object and thus has to be communicated over a wireless network. We propose a family of tracking protocols that allow trading the communication cost and the amount of trajectory data stored at a MOD off against the spatial accuracy. With each of these protocols, the MOD manages a simplified trajectory that does not deviate by more than a certain accuracy bound from the actual movement. Moreover, the different protocols enable several trade-offs between computational costs, communication cost, and the reduction in the trajectory data: Connection-Preserving Dead Reckoning minimizes the communication cost using dead reckoning, a technique originally designed for tracking an object’s current position. Generic Remote Trajectory Simplification (GRTS) further separates between tracking of the current position and simplification of the past trajectory and can be realized with different line simplification algorithms. For both protocols, we discuss how to bound the space consumption and computing time at the moving object and thereby present an effective compression technique to optimize the reduction performance of real-time line simplification in general. Our evaluations with hundreds of real GPS traces show that a realization of GRTS with a simple simplification heuristic reaches 85–90% of the best possible reduction rate, given by retrospective offline simplification. A realization with the optimal line simplification algorithm by Imai and Iri even reaches more than 97% of the best possible reduction rate.  相似文献   

18.
The knowledge about the position and movement of people is of great importance in mobile robotics for implementing tasks such as navigation, mapping, localization, or human-robot interaction. This knowledge enhances the robustness, reliability and performance of the robot control architecture. In this paper, a pattern classifier system for the detection of people using laser range finders data is presented. The approach is based on the quantified fuzzy temporal rules (QFTRs) knowledge representation and reasoning paradigm, that is able to analyze the spatio-temporal patterns that are associated to people. The pattern classifier system is a knowledge base made up of QFTRs that were learned with an evolutionary algorithm based on the cooperative-competitive approach together with token competition. A deep experimental study with a Pioneer II robot involving a five-fold cross-validation and several runs of the genetic algorithm has been done, showing a classification rate over 80%. Moreover, the characteristics of the tests represent complex and realistic conditions (people moving in groups, the robot moving in part of the experiments, and the existence of static and moving people).  相似文献   

19.
The first objective of this research was to develop an omnidirectional home care mobile robot. A PC-based controller controls the mobile robot platform. This service mobile robot is equipped with an “indoor positioning system” and an obstacle avoidance system. The indoor positioning system is used for rapid and precise positioning and guidance of the mobile robot. The obstacle avoidance system can detect static and dynamic obstacles. In order to understand the stability of a three-wheeled omnidirectional mobile robot, we carried out some experiments to measure the rectangular and circular path errors of the proposed mobile robot in this research. From the experimental results, we found that the path error was smaller with the guidance of the localization system. The mobile robot can also return to its starting point. The localization system can successfully maintain the robot’s heading angle along a circular path.  相似文献   

20.
Currently, most of the stereo vision systems are constructed on PC-based or multi-CPU combination structures with two CCD cameras. It is difficult to be applied in movable plants for stand-alone requirement. Due to electronic technology development, the complementary metal-oxide semiconductor (CMOS) image sensor has been widely used in a lot of electronic commercial products and the digital signal processor (DSP) operation speed and capacity are good enough for stereo vision system requirement. Here, a new stereo vision platform is designed with TMS320C6416 DSK board integrated with two CMOS color image sensors for detecting and locating moving objects. The data communication interface, system monitoring timing flow, and image pre-processing software programs are developed, too. This system can be used to detect and track any moving object without object color and shape limitations of previous study. Experimental results are used to evaluate this system’s dynamic performance. This low cost stereo vision system can be employed in movable platform for stand-alone application, i.e., mobile robot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号