首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li  Fengyong  Zhu  Hengjie  Yu  Jiang  Qin  Chuan 《Multimedia Tools and Applications》2021,80(2):2141-2159

Existing prediction-based works on reversible data hiding in encrypted images usually embed the secret messages by referring to the difference between current pixel and its predicted value. An accurate prediction model may promote an improvement of embedding capacity. Existing schemes, however, may not work well due to involving a bad prediction model so that their embedding capacity cannot be improved further. To address the problem, this paper proposes a new reversible data hiding scheme in encrypted images by designing double linear regression prediction model. Proposed model can significantly improve the prediction accuracy of current pixel based on neighboring pixels, more auxiliary rooms are thus vacated to embed secret data. Furthermore, a prediction error map is constructed to mark the error positions caused by inaccurate prediction, which can be further compressed lossless to lower the capacity of auxiliary data. Reversible recovery for original image can be finally achieved successfully. Experimental results demonstrate that the proposed scheme significantly improves prediction accuracy and data embedding capacity by combining double linear regression prediction model and prediction error map, and then can achieve separable and lossless recovery for the original image. Compared with existing works, the proposed scheme can implement a higher visual quality of decrypted images, while maintaining a larger embedding capacity.

  相似文献   

2.

In this paper, a joint scheme and a separable scheme for reversible data hiding (RDH) in compressed and encrypted images by reserving room through Kd-tree were proposed. Firstly, the plain cover image was losslessly compressed and encrypted with lifting based integer wavelet transform (IWT) and set partition in hierarchical tree (SPIHT) encoding. Then, several shift operations were performed on the generated SPIHT bit-stream. The shifted bit-stream was restructured into small chunks and packed in the form of a large square matrix. The binary square matrix was exposed to Kd-tree with random permutations and reserving uniform areas of ones and zeros for secret data hiding. After that, a joint or a separable RDH scheme can be performed in these reserved spaces. In the joint RDH scheme, the secret data were embedded in the reserved spaces before encrypting with multiple chaotic maps. Thus, secret data extraction and cover image recovery were achieved together. In the separable RDH scheme, the secret data were embedded in the reserved spaces after encrypting with multiple chaotic maps. Since message extraction and cover image recovery are performed separately, anyone who has the embedding key can extract the secret message from the marked encrypted copy, while cannot recover the cover image. A complete encoding and decoding procedure of RDH for compressed and encrypted images was elaborated. The imperceptibility analysis showed that the proposed methods bring no distortion to the cover image because there was no change to the original cover image. The experimental results showed that the proposed schemes can perform better for secret data extraction and can restore the original image with 100% reversibility with much more embedding capacity and security. The proposed schemes significantly outperform the state-of-the-art RDH methods in the literature on compressed and encrypted images.

  相似文献   

3.
针对多数密文域可逆信息隐藏算法嵌入容量小、加密算法单一的问题,提出一种双重加密的方法,并利用码分多址复用(CDMA)的思想嵌入秘密信息。加密时将图像分块,先对像素块进行多粒度置乱加密,再对块中每个像素的中间2位用流密码加密。信息嵌入采用码分多址的思想,选取k个长为4的相互正交的矩阵嵌入k层秘密信息,利用矩阵的正交性实现秘密信息多层嵌入,在提高嵌入容量的同时保证了对像素点的较小改变。对不满足嵌入条件的像素块嵌入伪比特,可避免使用位置图。拥有信息提取密钥的合法接收者可以提取秘密信息;拥有图像解密密钥可以近似恢复原始图像;拥有两种密钥既可提取秘密信息又可无损恢复原始图像。实验结果表明,512×512灰度图像Lena在峰值信噪比(PSNR)大于36 dB时最大嵌入容量133 313 bit。所提算法增强了加密图像安全性,在保证可逆性的同时大大提高密文域可逆信息隐藏嵌入容量。  相似文献   

4.

To better protect the security of users’ private data in the cloud environment, the technology for separable reversible data hiding in encrypted images has been attracting increasing attention from researchers. In this paper, we propose a separable reversible data hiding scheme in encrypted images based on the flexible preservation of differences. This scheme has three parts: 1) For the content owner, the original image is divided into non-overlapping blocks, for which block-mean is computed. Then the differences between the values of every pixel and the block-mean are obtained and an initial label map is generated. Because most of the differences tend to concentrate around 0, we use two bits to dynamically record the range of the differences to vacate space for hiding. Further, introducing the block-mean differences also serves to vacate more space, for which the label map is amended accordingly. Finally, the image with free space is encrypted into the encrypted image using an encryption key. 2) For the data hider, the secret bits are embedded into the encrypted image by directly replacing the spare bits without obtaining any information of the original image. 3) For the receiver, he/she can achieve the desired information according to the key in his/her possession. Experimental results show that our proposed scheme is able to achieve an average embedding capacity as large as 1.785 bpp and 1.709 bpp when block size is set to 2?×?2 and 2?×?4, respectively. Comparison with those of previous schemes, the proposed scheme has excellent embedding capacity, especially for smoother images.

  相似文献   

5.
针对目前密文域可逆信息隐藏算法嵌入容量较小的问题,提出了基于预测误差双重编码的大容量密文域可逆可分离信息隐藏算法。首先为了预留秘密信息的嵌入空间,图像拥有者利用基于预测误差的哈夫曼编码及扩展游程编码对图像进行预处理,然后加密图像;数据嵌入者在加密后的图像中嵌入秘密信息;接收者根据信息隐藏密钥可以准确无误地提取秘密信息,根据解密密钥可以无损恢复图像,两者无顺序要求。实验结果表明,预测误差双重编码的应用有效地提高了嵌入容量。  相似文献   

6.
目的 针对现有的加密域可逆信息隐藏算法未能充分利用图像的全部位平面的问题,提出了一种密文域高嵌入率图像全位面可逆数据隐藏。方法 对载体图像进行加密,然后将隐蔽信息嵌入到加密图像中,进行隐蔽传输,发送给接收者。本文将灰度图像的8个位平面都用来进行数据嵌入,并把每个位平面划分成不重叠的块,分为非连续块(块内像素值0,1都存在)和连续块(块内为全0或全1像素值),按块进行重排列且将排列前的块标签嵌入到重排列图像中,使用流密码对图像进行加密。在数据嵌入阶段,提出了带修正信息的像素预测方法用于非连续块的嵌入。连续块中,保持块内右下角像素值不变,用于连续块的恢复,其他位置嵌入数据;非连续块中,对预测正确的像素嵌入数据,预测错误的像素保持不变。结果 实验过程实现了多种密文域可逆数据隐藏算法,本文进行大量对比实验,并在BOSSbase和BOWS-2数据集上进行验证,与其他方法比较,本文方法在BOSSbase和BOWS-2数据集上的嵌入率分别提升了42.1%和43.3%。结论 提出的加密图像可逆数据隐藏方案,通过对不同性质的块采用不同方法进行数据嵌入,利用图像全位面信息,使得方案能够获得更高的嵌入率,表明了本文方法的有效性。  相似文献   

7.
Hiding secret data in digital images is one of the major research fields in information security. Recently, reversible data hiding in encrypted images has attracted extensive attention due to the emergence of cloud services. This paper proposes a novel reversible data hiding method in encrypted images based on an optimal multi-threshold block labeling technique (OMTBL-RDHEI). In our scheme, the content owner encrypts the cover image with block permutation, pixel permutation, and stream cipher, which preserve the in-block correlation of pixel values. After uploading to the cloud service, the data hider applies the prediction error rearrangement (PER), the optimal threshold selection (OTS), and the multi-threshold labeling (MTL) methods to obtain a compressed version of the encrypted image and embed secret data into the vacated room. The receiver can extract the secret, restore the cover image, or do both according to his/her granted authority. The proposed MTL labels blocks of the encrypted image with a list of threshold values which is optimized with OTS based on the features of the current image. Experimental results show that labeling image blocks with the optimized threshold list can efficiently enlarge the amount of vacated room and thus improve the embedding capacity of an encrypted cover image. Security level of the proposed scheme is analyzed and the embedding capacity is compared with state-of-the-art schemes. Both are concluded with satisfactory performance.  相似文献   

8.
为了提高嵌入容量和实现解密与提取信息的可分离性,文章将希尔伯特曲线和同态加密的特性运用到密文域可逆信息隐藏中。首先,图像拥有者对原始图像进行预处理,并在加密后构造密文镜像点。然后,信息隐藏者通过同态加法对目标像素点进行秘密信息嵌入。最后,接收方不仅可以提取秘密信息,还可以无损地恢复原始图像。实验证明,文章方案不但能够实现解密与提取信息的可分离性,而且在保证图像质量的前提下,最大嵌入容量可达到69120bits.  相似文献   

9.
Steganography is the science of hiding secret message in an appropriate digital multimedia in such a way that the existence of the embedded message should be invisible to anyone apart from the sender or the intended recipient. This paper presents an irreversible scheme for hiding a secret image in the cover image that is able to improve both the visual quality and the security of the stego-image while still providing a large embedding capacity. This is achieved by a hybrid steganography scheme incorporates Noise Visibility Function (NVF) and an optimal chaotic based encryption scheme. In the embedding process, first to reduce the image distortion and to increase the embedding capacity, the payload of each region of the cover image is determined dynamically according to NVF. NVF analyzes the local image properties to identify the complex areas where more secret bits should be embedded. This ensures to maintain a high visual quality of the stego-image as well as a large embedding capacity. Second, the security of the secret image is brought about by an optimal chaotic based encryption scheme to transform the secret image into an encrypted image. Third, the optimal chaotic based encryption scheme is achieved by using a hybrid optimization of Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) which is allowing us to find an optimal secret key. The optimal secret key is able to encrypt the secret image so as the rate of changes after embedding process be decreased which results in increasing the quality of the stego-image. In the extracting process, the secret image can be extracted from the stego-image losslessly without referring to the original cover image. The experimental results confirm that the proposed scheme not only has the ability to achieve a good trade-off between the payload and the stego-image quality, but also can resist against the statistics and image processing attacks.  相似文献   

10.
随着互联网技术的发展和社交网络的普及,可逆信息隐藏技术因其具有无损恢复载体信息的特性而被广泛应用于医疗、军事等领域的隐蔽信息传输。传统的可逆信息隐藏方案大多聚焦于嵌入容量提升和载密图像失真率降低,并未过多关注人们对图像视觉细节的要求,难以抵抗隐藏信息检测方法。针对上述挑战,从增强图像视觉平滑度方面入手,提出了一种增强图像平滑度的可逆信息隐藏方案,在嵌入隐蔽信息的同时提升载密图像最终的视觉质量。具体来说,所提方案将目标图像分为参考区域与非参考区域,利用非参考区域的图像像素预测值与原始像素值的差值作为信息嵌入的判断依据,通过差值平移来嵌入信息;进而构造图像平滑机制,采用高斯滤波作为秘密信息嵌入时像素值修改的模板,对预测值进行滤波计算,将滤波差值无损地加入载体图像中,以达到图像平滑的效果;同时将参考区域的像素值作为边信息,用于实现信息提取方对原始载体图像和秘密信息的无损恢复和提取;并以高斯函数中的滤波系数作为预置秘密信息对嵌入信息进行加密处理以保证嵌入信息的机密性。大量经典图像数据集的测试与分析结果表明,所提方案处理过的载密图像视觉平滑度得到了显著增强,具有较低的失真率、较高的嵌入率和较高的嵌入提取效率。在典型环境下,其生成的载密图像与高斯滤波后的图像相似度可达0.996 3,且可获得37.346的峰值信噪比和0.328 9的嵌入容量。  相似文献   

11.
Reversible data hiding in encrypted images has become an effective and popular way to preserve the security and privacy of users’ personal images. Recently, Xiao et al. firstly presented reversible data hiding in encrypted images with use of the modern signal processing technique compressive sensing (CS). However, the quality of decrypted image is not great enough. In this paper, a new method of separable data hiding in encrypted images are proposed by using CS and discrete fourier transform, which takes full advantage of both real and imaginary coefficients for ensuring great recovery and providing flexible payload. Compared with the original work, the proposed method can obtain better image quality when concealing the same embedding capacity. Furthermore, image decryption and data extraction are separable in the proposed method, and the secret data can be extracted relatively accurately.  相似文献   

12.

Reversible Data hiding techniques reduce transmission cost as secret data is embedded into a cover image without increasing its size in such a way that at the receiving end, both secret data and the cover image can be extracted and recovered, respectively, to their original form. To further reduce the transmission cost, the secret data can be embedded in the compression codes by some popular reversible data hiding schemes. One of the popular and important reversible data hiding method is high- performance data-hiding Lempel–Ziv–Welch (HPDH-LZW) scheme which hides the secret data in LZW codes. In this paper, the HPDH-LZW scheme is modified in order to increase its hiding capacity and compression ratio. First, the proposed work modifies the Move to Front (MTF) encoding technique to hide the secret data and also to increase the similarity among the element of the cover media. Then, LZW encoding technique is applied on the resultant cover data to obtain LZW codes, which are used to hide further secret data. Experimental results show that the proposed scheme has significantly increased the data hiding capacity and have good embedding and extraction speed in comparison to other state of the art schemes.

  相似文献   

13.
目的 像素置换作为一种可逆信息隐藏方式具有良好的抗灰度直方图隐写分析能力,但嵌入容量偏小一直是其缺陷。针对这一问题,提出了一种基于像素置换的自适应可逆信息隐藏算法。方法 首先,与传统2×2像素块结构相比构造了尺寸更小的像素对结构,使得载体图像可以被更稠密地分割,为嵌入容量的提升提供了基数条件。其次,提出适用于该新像素结构的可嵌像素对(EPP)筛选条件,避免嵌入过程引起图像质量大幅下降。之后,根据EPP的灰度趋势差异对其进行自适应预编码,提高Huffman编码压缩比,进一步提升算法嵌入容量。最终,通过像素置换嵌入信息。结果 与2×2像素块结构的非自适应图像隐写算法相比,在同样保证灰度直方图稳定性的情况下该算法的PSNR提高了32%左右,嵌入容量提高了95%以上。其中自适应性对嵌入容量提升的贡献极大。结论 本文算法同时具有抗灰度直方图隐写分析能力与高嵌入容量性的可逆信息隐藏。算法构造了更高效的可嵌单位,并且针对不同载体图像的特点对其可嵌区域进行差异化编码。实验结果表明,本文算法在具有更好的不可见性的同时,嵌入容量得到大幅提升。  相似文献   

14.

Data hiding is a technology designed for safely transmitting secret data through open communication channels, in which the secret data are embedded into a cover carrier imperceptibly. Among the existing data hiding schemes, the exploiting-modification-direction (EMD) based schemes draw considerable attentions due to large embedding capacity. The proposed scheme improves the EMD-2 scheme by constructing an extended squared magic matrix, resulting in a larger embedding capacity high up to 3.15 bits per pixel (bpp). Experimental results show that the proposed scheme outperforms state-of-the-art reference matrix based schemes in terms of embedding capacity, meanwhile, maintains good image quality.

  相似文献   

15.
基于块参照像素的无损信息隐藏算法   总被引:1,自引:1,他引:0  
提出一种具有高嵌入容量的图像无损信息隐藏算法。首先将载体图像分成互不重叠的子块,然后在每块中选定一个参照像素,并计算参照像素与块内其它像素的差。在像素差直方图移位产生冗余空间之后,机密信息就可以无损地嵌入到这些冗余空间中。该方法在机密信息提取后可完全恢复载体图像,而且提取机密信息和恢复载体图像不需要除机密信息长度之外的任何信息。实验结果表明了该算法的有效性。  相似文献   

16.
Reversible data hiding can restore the original image from the stego image without any distortion after the embedded secret message is exactly extracted. In this paper, a novel, reversible, data hiding scheme for high quality images is proposed in spatial domain. To increase embedding capacity and enhance image quality, the proposed scheme classifies all pixels as wall pixels and non-wall pixels. For wall pixel, the interpolation error is used to embed secret data over the interpolation prediction method. In contrast, the difference value between the non-wall pixel and its parent pixel, which is defined by the direction order, is computed to hide secret data based on the histogram shifting. The experimental results demonstrate that our scheme provides a larger payload and a better image quality than some existing schemes. Moreover, the performance of the proposed scheme is more stable for different images.  相似文献   

17.
同态公钥加密系统的图像可逆信息隐藏算法   总被引:1,自引:0,他引:1  
项世军  罗欣荣 《软件学报》2016,27(6):1592-1601
同态加密技术在加密信息、对信息进行隐私保护的同时,还允许密文数据进行相应的算术运算(如云端可直接对同态加密后的企业经营数据进行统计分析),已成为云计算领域的一个研究热点.然而,由于云存在多种安全威胁,加密后信息的安全保护和完整性认证问题仍然突出.另外,信息在加密后丢失了很多特性,密文检索成为了云计算需要攻克的关键技术.为了实现对加密图像的有效管理及其安全保护,本文提出了一种基于同态加密系统的图像可逆信息隐藏算法.该算法首先在加密前根据密钥选择目标像素,并利用差分扩展DE(Difference Expansion)的方法将目标像素的各比特数据嵌入到其它像素中.然后,利用Paillier同态加密系统对图像进行加密得到密文图像.在加密域中,利用待嵌入信息组成伪像素,加密后替换目标像素,完成额外信息的嵌入.当拥有相应的密钥时,接收方可以分别在密文图像或明文图像中提取出已嵌入的信息.当图像解密后,通过提取出自嵌入目标像素的各比特数据来恢复原始图像.实验仿真结果表明,该算法能够在数据量保持不变的前提下完成同态加密域中额外信息的嵌入,信息嵌入快速高效,并可分别从加密域和明文域中提取出嵌入的信息.  相似文献   

18.
为了提高信息嵌入率和实现直接解密后无损恢复原始图像,提出了基于Paillier的可分离密文域可逆信息隐藏算法.首先图像拥有者利用Paillier算法对图像进行加密后上传云服务器;而后信息隐藏者在云服务器中生成三个零矩阵,通过构造尺寸大小为2×2的填充分块进行信息嵌入;接收方根据不同的密钥,实现信息提取与图像解密的可分离.实验结果表明,相比于传统的可逆嵌入算法,该算法直接解密后不会存在失真的现象,并且最大嵌入率可达到2 bpp.  相似文献   

19.
柯彦  张敏情  刘佳 《计算机应用》2016,36(11):3082-3087
针对当前可逆信息隐藏技术可分离性差、载体恢复失真较大的问题,提出了一种可分离的加密域可逆信息隐藏方案。在R-LWE公钥密码算法加密过程中,通过对加密域冗余区间的重量化与对密文数据的再编码,可在密文冗余中嵌入十六进制数构成的秘密信息。嵌入信息后,使用隐写密钥可以完整提取隐藏信息,使用解密密钥可以无差错恢复出加密前数据,提取过程与解密过程可分离。理论推导出了影响信息提取与直接解密正确性的相关参数,通过仿真实验得出了参数的可取值区间,实验结果表明本方案在实现加密域的可分离可逆信息隐藏的基础上充分保证了嵌入后的明文解密的可逆性,而且1比特明文在密文域最大可负载4比特秘密信息。  相似文献   

20.
To enhance the embedding capacity of a reversible data hiding system, in this paper, a novel multiple-base lossless scheme based on JPEG-LS pixel value prediction and reversible difference expansion will be presented. The proposed scheme employs a pixel value prediction mechanism to decrease the distortion caused by the hiding of the secret data. In general, the prediction error value tends to be much smaller in smooth areas than in edge areas, and more secret data embedded in smooth areas still meets better stego-image quality. The multiple-base notational system, on the other hand, is applied to increase the payload of the image. With the system, the payload of each pixel, determined by the complexity of its neighboring pixels, can be very different. In addition, the cover image processed by the proposed scheme can be fully recovered without any distortion. Experimental results, as shown in this paper, have demonstrated that the proposed method is capable of hiding more secret data while keeping the stego-image quality degradation imperceptible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号