首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
风电机组参与一次调频缓解了传统同步机组的调频压力,但其调频性能受功率跟踪方法的影响,不利于系统频率稳定。为此提出了基于改进转子转速和桨距角协调控制的一次调频策略,在全风速范围内预留调频所需功率裕度,在系统频率波动时能够提供快速且持久的有功支撑,实现对风电机组静调差系数的整定。对比分析不同减载控制策略下机组疲劳载荷和损伤等效载荷,结果表明所提策略可有效降低机组的疲劳载荷,延长使用寿命。最后,通过仿真验证了所提一次调频策略的有效性,频率改善效果优于传统一次调频控制,提高了风电场参与系统频率调节服务的一致性和可预测性。  相似文献   

2.
针对双馈风电机组(DFIGs)不具备调频控制能力的问题,设计DFIG一次调频控制策略,实现了DFIG参与电网一次调频。研究DFIG功率控制原理和频率响应过程,并考虑虚拟惯量、频率下垂控制对应的响应时间尺度不同,提出基于虚拟惯量和频率下垂控制的DFIG一次调频策略,增强了DFIG应对频率变化时的暂态和稳态功率调节能力。基于RT-LAB软件搭建了DFIG频率响应控制的半实物仿真平台,仿真与实测结果验证了该方法能够有效提高DFIG电网频率适应性。  相似文献   

3.
为缓解大规模风电并网给电力系统频率带来的不利影响,在考虑风力发电经济性的前提下,使风电机组具有类似常规机组的调频特性,以改善含大规模风电的电力系统的频率稳定性,提出一种基于分段控制思想的双馈风电机组有功-频率控制策略,将风电机组有功-频率控制分为4段:卸载运行段、调频段、最大功率运行段及脱网运行段。研究采用该策略的控制模型参数整定问题,进而分析采用该控制策略的双馈风电机组的调频能力,探讨风电渗透率及负荷变化幅度对其调频效果的影响,在此基础上得出双馈风电机组的有功-频率特性。仿真结果验证了所提有功控制策略的可行性与有效性。  相似文献   

4.
随着风电并网容量增加,风电机组部分取代同步机组,需要其参与调频以维持电网稳定性。现有电网经济调度研究,在考虑频率时往往忽略风电,或以风电功率代替具体风电机组。提出一种计及双馈感应发电机(DFIG)参与一次调频的概率最优潮流模型。计及风速预测误差概率特性,在优化目标中引入频率偏移,通过权重系数兼顾发电成本和频率偏移。引入DFIG内部约束,提出优化模型中DFIG参数的修正方法,实现DFIG与同步发电机共同参与一次调频。算例分析了DFIG参与调频效果、目标权重系数对优化结果的影响,给出了发电成本和频率偏移的概率特性,验证了所提模型的有效性。  相似文献   

5.
由于采用全功率变流器实现机械和电磁系统的解耦控制,永磁直驱风电机组不能对电网频率变化进行响应。为了使永磁直驱风电机组具备一次调频能力,采用转速和桨距角相结合的协调控制策略,并根据不同的风速条件,制定了低风速、中风速和高风速3种模式。在低风速时,采用减载运行至90%最大功率曲线和下垂控制相结合的控制策略;在中风速时,采用转速和桨距角结合的协调控制策略;在高风速时,采用减载运行至90%最大功率曲线和桨距角相结合的控制策略。以上控制策略可以使永磁直驱风电机组有效参与电网的一次调频。最后通过仿真结果验证了永磁直驱风电机组协调控制策略的有效性。  相似文献   

6.
双馈风电机组的解耦控制决定了其输出的有功功率无法响应电网的频率变化,当风电的渗透率不断升高时,电网的调频压力不断增大。当风电作为一种新的调频电源并入电网时,为使其更好地为电网调频服务,提出一种基于可变系数的双馈风电机组与同步发电机协调一次调频策略。在不同的运行模式下,定义并整定了双馈风电机组的可变调差系数,使其可以根据当前备用容量决定其调频出力深度;兼顾风电机组的调频备用与经济性,在频率偏差允许范围内通过协调双馈风电机组与同步发电机的调频出力,实现了既能减轻同步发电机的调频压力,又能间接减少风电机组弃风量的双重目标。仿真结果表明,所提出的调频策略可使风电机组的储备功率更加充分地参与调频,有效减轻同步发电机的调频压力。  相似文献   

7.
风电机组参与调频是解决高比例可再生能源电力系统调节能力不足的手段之一,双馈风电机组可通过转子超速预留部分功率而获得双向调频能力。风电机组的双向可调频功率受额定转速制约,本文根据风电机组的基本运行方程,推导了双馈风电机组转子超速时最大调节功率表达式,指出风电机组的双向可调频功率受功率预留系数和最大调节功率约束。分析风电机组参与持续调频时双向功率约束的影响,给出了风电机组可实现的调差系数域。以某风电场24h实测数据,在实际频率变化过程中仿真计算风电机组调频功率达到调差系数水平的程度,实证分析了功率预留系数对系统频率质量、风电机组调频功率、风功率利用情况的影响。研究结果表明评估风电机组参与持续调频的效果时必须考虑双向功率约束的影响。  相似文献   

8.
随着风电渗透率的增加,风电机组参与电力系统调频已成为间歇式风电消纳的共识.为实现含高比例风电电力系统频率特性的高效准确分析,该文首先建立了附加频率控制下双馈异步风电机组(DFIG)双输入(风速、频率)-单输出(并网功率)频率响应模型,并通过劳斯近似,依次建立了DFIG频率响应4阶和2阶模型;进而针对双馈风电场整体频率响应特性的建模需求,结合矩阵束法和最小二乘法,设计了采用数据重构的双馈风电场频率响应降阶模型参数辨识算法;最后,基于DFIG单机并网系统和含双馈风电场的扩展IEEE 30节点系统,通过对比Matlab/Simulink电磁暂态仿真结果,分别验证了频率响应降阶模型和所提参数辨识算法的准确性和有效性.  相似文献   

9.
杨涛 《电工技术》2022,(16):57-60
现有双控风电机组在发电时的频率往往与电网频率解耦,致使风电机组本身缺乏自主参与电网调频的能力, 对此提出一种基于 DFIG风电机系统频率波动特征的惯性动态响应控制策略.该策略通过在风电机组控制环节添加频率-功率控制模块,使风电机组能有效针对电力系统频率的波动输出功率,达到控制风机功率的目的,在一定程度上避免了电力系统内部频率突变使电网能量传输失衡的现象.仿真结果验证了所提控制策略的可行性和有效性.  相似文献   

10.
风电主导的微电网系统惯量低,对负荷频率控制的快速性和稳定性产生负面影响。为此,提出一种考虑风速随机性的风电与抽水蓄能协同控制方法。首先,通过对风机次优功率跟踪(optimized power point tracking, OPPT)惯性控制方法在电网频率调节时受风速影响机理的分析,制定风机进行微网一次调频时的风速整定规则;然后,在获取风机参与调频整定风速区间的基础上,根据风机参与状态,设计抽水蓄能机组控制方式,并对其控制器参数进行动态调整以适应风速的不确定性,确保调频效果最佳。通过仿真分析,验证所提方法不仅能充分挖掘风机的调频潜力,而且能提高微网调频的完备性。  相似文献   

11.
变速风电机组调频特性分析及风电场时序协同控制策略   总被引:4,自引:1,他引:3  
受变速风电机组与同步发电系统弱耦合的影响,系统等效转动惯量和调频能力随风电渗透率的增加而减少。为此,文中研究了变速风电机组附加频率控制方式,分析了变速风电机组参与系统调频过程中输入机械功率与输出电磁功率的动态变化过程,对风电机组调频能力随风速的变化规律进行了量化分析,给出了风电机组参与系统调频过程中的有功增量与调频可持续时间的对应关系,在此基础上提出了风电场时序协同调频控制策略。依据该策略,风电场各风电机组按照风速—有功增量—可持续时间相依的调频介入与退出机制参与系统调频过程。仿真算例证明,通过协同风电机组间的调频深度,并对调频退出时机施行有序分散化的策略,既充分挖掘了风电机组参与系统调频的潜力,又有效降低了风电机组参与调频所带来的负面效应。  相似文献   

12.
受变速风电机组与同步发电系统弱耦合的影响,系统等效转动惯量和调频能力随风电渗透率的增加而减少。为此,文中研究了变速风电机组附加频率控制方式,分析了变速风电机组参与系统调频过程中输入机械功率与输出电磁功率的动态变化过程,对风电机组调频能力随风速的变化规律进行了量化分析,给出了风电机组参与系统调频过程中的有功增量与调频可持续时间的对应关系,在此基础上提出了风电场时序协同调频控制策略。依据该策略,风电场各风电机组按照风速—有功增量—可持续时间相依的调频介入与退出机制参与系统调频过程。仿真算例证明,通过协同风电机组间的调频深度,并对调频退出时机施行有序分散化的策略,既充分挖掘了风电机组参与系统调频的潜力,又有效降低了风电机组参与调频所带来的负面效应。  相似文献   

13.
参与系统调频的风电机组控制策略研究综述   总被引:1,自引:0,他引:1  
电力系统频率是衡量电力系统电能质量的重要指标,风电机组自身运行特性导致大规模风电并网对系统频率稳定产生极大威胁,风电参与系统调频将成为电力系统未来发展的必然趋势。由于风机本身不具备频率调整的能力,因此风电机组调频控制策略已成为目前风力发电技术的研究热点,为此,在双馈感应风电机组(double fed induction generator,DFIG)正常运行控制基础上,对其参与系统调频控制策略方面相关研究进行分析和综述,分析了减载(deloading,del)运行参与调频的必要性和最优减载法案,研究虚拟惯性控制、下垂控制、桨距角控制等控制方法及其相互辅助从而达到高效调频的协调控制策略,最后展望了需进一步重点研究的内容:储能技术参与风电场调频的协调控制,风电参与系统调频的经济性分析。  相似文献   

14.
风电场基于下垂控制参与系统一次调频时,参数整定不当可能引发机组转速保护动作进而带来频率二次跌落问题。为此,提出了一种避免频率二次跌落的风电场一次调频功率分配方法。首先结合下垂控制的响应过程分析了转速保护动作带来频率二次跌落问题的物理机理,然后基于转速及功率约束条件提出了风电机组调频功率评估方法,进而得到风电场的调频功率评估方法和风电场一次调频功率分配方法。基于Matlab/Simulink搭建了含有风电场的仿真模型。仿真结果表明,所提方法可充分发挥风电机组的调频能力,并避免频率二次跌落问题。  相似文献   

15.
变速恒频风机通过电力电子设备实现并网,导致机组转速与系统频率不再有耦合关系,无法主动响应系统频率变化。针对风电大规模并网引发的系统调频安全问题,采用优先减载低风速机组的风电场预留备用策略,并结合桨距角控制,实现满足系统备用需求,同时最大限度地储存旋转动能;然后提出了变调频系数的虚拟惯量控制策略,给出了下垂系数的整定方法,以实现风机减载功率充分释放,为系统提供可靠的调频功率支持。在DIgSILENT中建立了系统仿真模型,结果表明:所提策略能够合理分配风机的减载功率,并有效利用备用容量参与系统调频,提升了风机的频率控制能力。  相似文献   

16.
针对大规模风电经电网换相型高压直流(LCC-HVDC)送出的送端电网所面临的严峻高频问题,充分挖掘风电潜在调频能力,提出一种风电与直流频率限制器(FLC)参与送端电网调频的协同控制策略。分析直流FLC参与送端电网调频的响应特性,刻画送端电网频率与风电机组功率的下垂关系,设计风电机组变转速与变桨距角相结合的一次调频控制方法。建立包括常规机组一次调频、风电机组下垂控制和直流FLC的频率响应综合模型,结合电网的频率稳定要求,采用灵敏度方法整定风电机组与直流FLC的调频参数,设计风电与直流FLC共同参与的频率协同控制策略。算例仿真结果表明:所提频率协同控制策略可有效降低高频切机、直流过载运行风险,提高送端电网的频率稳定性。  相似文献   

17.
风电机组的友好型调频控制对改善风电并网系统的频率响应特性具有重要作用。该文在分析最大功率跟踪(maximum power point tracking,MPPT)运行风电机组,利用变比例系数调速、飞轮储能基于功率调节实现频率支撑可行性的基础上,从优化风储系统频率响应特性出发,基于协同控制理论,提出飞轮储能协同MPPT运行风电机组提供频率响应的两层协同控制方案。通过将频率偏差和风电机组虚拟电气惯量线性组合构成宏变量,并利用宏变量的零输入响应控制流形,设计实现不同风速风电机组协同提供频率支撑的变比例系数调速策略。进一步,基于频率偏差、储能调频功率指令和风电机组虚拟惯量的线性组合构成宏变量,采用相同的控制流形设计飞轮储能协同风电机组提供频率支撑、快速恢复风电机组MPPT运行和避免频率二次扰动的附加调频有功调节策略。最后,利用风电并网系统的负荷频率扰动,验证所提协同控制的有效性,结果表明,该策略不仅有助于提高系统恢复同步稳定的动态特性,而且能够降低同步发电机参与调频的有功调节速度要求。  相似文献   

18.
为了减少新能源装机容量逐年增长对系统调频的危害,防止云南电网高周切机现象,需要新能源积极参与调频过程,以减缓火电、水电调频厂的压力.由于在机组层直接调频会导致风电测频出现误差且协调性能差,针对此问题,首先在风电场层控制中引入综合惯性控制计算功率缺额;其次依据预测风速将双馈风电机组分类,利用规则排队法进行一次调频的有功功率实时分配;再依据预测功率在每个控制周期内实时刷新各类机组出力限值,将功率指令实时传递至机组层响应频率的变化;最后基于MATLAB/SIMULINK平台搭建双馈风电场仿真模型.仿真结果表明,利用基于风速预测的规则排队法进行功率分配能改善调频效果.  相似文献   

19.
随着风电并网容量的增加,电力系统的调频、调峰问题日益突出,这就要求风电场应具备功率调节和频率调整的综合控制能力。根据风电机组的风速状况提出超速控制和桨距角控制协调的减载控制方案,使得预留的功率既可满足风电场的限负荷控制要求,也可作为风电场的调频备用。同时,根据风电场自身的运行状况整定风电机组的静态调差系数,并结合风场的功率分配策略,使风电场能在电网限负荷条件下尽可能地支持电力系统的频率调整。仿真结果表明,所提出的方法能满足电网限负荷指令,改善系统的调频特性,并缓解常规发电厂的调频压力,充分利用限负荷条件下的"弃风"资源。  相似文献   

20.
兰飞  周立 《电网与清洁能源》2020,36(11):118-126
变速恒频风电机组通过变流器并网后,机组转速不再与系统频率发生耦合,导致系统总的转动惯量不断下降,严重威胁到了电力系统频率稳定性。根据频率发生变化时减载后的功率跟踪曲线比例系数的变化,提出了一种基于减载功率跟踪曲线切换的风电机组调频策略,并对各风速区间减载控制的具体过程进行了详细的分析,根据给定减载指令和减载策略的不同,对风速区间进行划分,各风速区间采用不同的减载策略(低风速的超速点采用二分法,中风速采用变参考功率的思想,高风速采用牛顿法求解附加桨距角或给定减载功率)。仿真结果表明,所提调频控制策略在保证自身稳定运行的同时,能够提高电力系统的频率稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号