首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
受变速风电机组与同步发电系统弱耦合的影响,系统等效转动惯量和调频能力随风电渗透率的增加而减少。为此,文中研究了变速风电机组附加频率控制方式,分析了变速风电机组参与系统调频过程中输入机械功率与输出电磁功率的动态变化过程,对风电机组调频能力随风速的变化规律进行了量化分析,给出了风电机组参与系统调频过程中的有功增量与调频可持续时间的对应关系,在此基础上提出了风电场时序协同调频控制策略。依据该策略,风电场各风电机组按照风速—有功增量—可持续时间相依的调频介入与退出机制参与系统调频过程。仿真算例证明,通过协同风电机组间的调频深度,并对调频退出时机施行有序分散化的策略,既充分挖掘了风电机组参与系统调频的潜力,又有效降低了风电机组参与调频所带来的负面效应。  相似文献   

2.
变速风电机组采用超速和变桨调节实现有功备用,通过下垂控制增发有功出力,可参与电网一次调频。基于风机出力对频率变化的增量,定义有无风电调频下的稳态频率偏移之差,以量化风电机组对减小频率偏移的贡献。发现风电调频能力与风电容量比例、风能大小、减载水平有关,调频效果与同步机组频率响应特性和电网负荷增量有关,确定了充分利用风电备用容量的负荷临界增量。稳态和动态仿真结果验证了不同风速下有功备用风电机组对电网频率的调节作用,发现高风速下风机动态过渡过程要比中低风速时快速。  相似文献   

3.
目前,大规模风电接入电力系统面临的主要问题之一是系统的频率稳定性。文中提出一种风电场级一次调频时序优化的工程实用策略,并对风光水火参与系统调频的次序提出了梯级调频方案。首先以云南电网为例,讨论了风光水火不同电源接入电网时的梯级调频方案,在电网发生频率扰动情况下对不同电源参与调频的顺序进行了研究,并提出了风电和光伏机组参与调频的需求。然后分析了调频时间尺度内风电场的功率变化及风电机组层面调频时的有功控制策略。在此基础上,在风电场层面给出了场内风电机组一次调频的投入与退出策略,通过读取风电场内各台风电机组的实时状态与计算系统的调频需求,得出风电场在调频期间需要投入的最小的风电机组台数,在风电场结束一次调频时通过时序依次退出风电机组的一次调频,降低风电场退出一次调频可能会造成的频率二次跌落。最后通过仿真验证了所提出的策略。  相似文献   

4.
针对常规风电场有功功率分配中,通过风速评价机组的功率调节能力不准确的问题,提出一种基于数据驱动的风电场有功功率分配算法。首先,采集不同风速下风电机组转速和桨距角数据,利用Takagi-Sugeno模糊模型和变异系数法评价变速系统和变桨系统参与功率调节的相对权重系数,确定机组的功率调节能力。然后,完成基于机组调节能力的风电场有功功率分配。最后,在MATLAB仿真平台上完成含有10台风电机组的风电场有功功率分配。仿真结果表明,与按风速权重有功功率分配算法相比,所提分配算法的风电场有功功率波动小,风电机组的转速和桨距角变化较为平滑,且高风速机组的载荷小。  相似文献   

5.
在高风电渗透率电力系统中,针对双馈感应风电机组的转子转速与电网频率解耦所造成的机组惯性与频率响应能力缺失的问题,提出了基于模糊逻辑控制的风—储系统协同运行控制策略。该控制策略通过在风—储控制系统中嵌入模糊逻辑控制器来决策风—储系统响应电网频率波动的总有功出力和风力机转子动能的调频参与系数。基于此,根据不同风速下的风电机组运行特性将风速分区,并针对各风速区间构建了适应该区间转速—功率特点的风—储系统运行策略,使风—储系统具备能适应多种风况的短期频率响应能力。仿真结果表明:文中所提出的风—储系统协同运行控制策略能有效提升风—储系统的惯性以及短期频率响应能力,不仅能使风—储系统的短期频率响应能力适应多种风况,还可避免风电机组退出调频造成的频率二次跌落问题,同时改善了高风电渗透率电力系统的频率稳定性。  相似文献   

6.
高比例的风电并网给电网的功率平衡与频率稳定带来了严峻的挑战,如何充分发挥变速风电机组的有功备用潜力,研究风电场快速可控的调频控制方法成为提高风电消纳能力的关键问题。提出适用于全风速工况的变速变桨距风电机组的改进型有功控制策略,有效地实现了风电场响应电网功率调度指令减载运行并提供旋转备用。考虑风电场分散接入场景,针对机组跳机和负荷脱网等可监测的、大容量的单一扰动/故障事件,基于功率平衡控制原理提出风电场的辅助调频协调控制新方法,在电网功率发生突变时,根据风电场与扰动节点的最短电气距离,合理启动和分配不同风电场的紧急功率控制容量。仿真结果表明,所设计的风电场有功-频率控制方案能从降低暂态频率偏差幅值及减小频率恢复时间两方面,有效地提升系统发生扰动后的频率稳定性。  相似文献   

7.
为了深入挖掘变速风电机组的调频潜力,提出变速恒频风电机组以改进的超速与变桨协调控制为基础,并配合常规机组进行调频控制的协调控制策略。通过超速与变桨协调控制,变速恒频风电机组减载运行使风电场留有一定的备用功率,可以保证电网在负荷波动时的功率平衡和频率稳定。仿真分析表明,协调控制策略可以有效地发挥风电机组的有功发出能力,并提升电网的频率稳定性。  相似文献   

8.
高风电渗透率下变速风电机组参与系统频率调整策略   总被引:4,自引:3,他引:1  
考虑负荷波动、风电有功输出的随机性,针对电力系统对大规模风电并网时电能质量、经济性、负荷支撑和快速响应等多方面的需求,提出了一种高风电渗透率下变速风电机组参与系统频率调整的多时间尺度协调优化策略。根据变速风电机组运行特性,制定不同风速工况下风电机组的减载控制,并在不同时间尺度对机组间的调频出力进行协调,使惯性与一次调频相结合,实现频率调整优化。结果表明该策略下变速风电机组不仅能够有效地为系统提供惯性支撑,并且具备灵活、可控的静态频率响应特性。  相似文献   

9.
在分析传统发电机组和风电机组的调频能力基础上,提出一种以整个风电场作对象的新型风电场调频控制策略,该策略基于分层架构,通过储备控制,既能在开始几秒钟提供快速有功功率支持,帮助水力发电为主的系统减少初始频率下降,在一定风速下,也能长期提供额外有功功率支持;仿真结果表明风电场能够在一定程度上像常规电厂一样参与系统频率控制。  相似文献   

10.
考虑惯性调频的双馈风电机组主动转速保护控制策略   总被引:2,自引:0,他引:2  
双馈风电机组模拟惯性调频能响应系统频率变化、缓解大规模风电并网导致的系统惯性降低问题。但是转子储存动能有限,当转子转速下降到一定限值时风电机组将退出调频并恢复转速,这将引起系统频率二次跌落。文中首先对双馈风电机组在不同风速区内的惯性调频特性进行了分析,并量化分析了不同风速区内风电机组参与调频过程中的有效释放动能,然后提出了基于动能损失负反馈的主动转速保护控制策略。该策略根据双馈风电机组容量和实时运行工况调整转速保护控制器的比例—积分系数,使双馈风电机组随着转子转速下降逐渐退出调频过程,从而维持风电机组在释放动能过程中自身的稳定性,避免频率二次跌落。不同风速区内仿真结果验证了所提主动转速保护控制策略的有效性。  相似文献   

11.
通过分析风力发电系统的功率控制特性,提出了一种风电机组快速频率控制方法,并将其与传统的虚拟惯量控制方法进行了对比研究。建立了风电参与系统频率控制的虚拟惯量控制和快速频率控制模型,分析了两种频率控制方法下系统的频率响应特性。采用虚拟惯量控制方法,风电机组跟踪系统频率变化情况释放风机旋转动能,需要合理整定控制器参数以保证风电机组的频率控制性能;快速频率控制可根据风电机组运行状态充分释放转子动能,对扰动后系统频率变化率改善效果更为明显,更适合高比例新能源接入后系统惯量较低的电力系统。  相似文献   

12.
为了使风电场系统和电网系统能相互提供惯性支撑和进行频率响应,提出了一种换流站级的附加频率控制策略。该附加控制策略在风电场侧换流站(WFVSC)的定频率控制和电网侧换流站(GSVSC)的定直流电压控制中分别引入了频率-直流电压(f-Udc)下垂特性,人为的耦合两侧交流电网系统频率的关系,在不需要通信的条件下,实现了在事故期间可以灵活相互支援的目的,从而缓解了事故端系统调频的负担。最后在仿真软件PSCAD/EMTDC中搭建了风电场并网直流外送的模型,仿真结果表明所提附加频率控制策略增强了系统的惯性支撑水平和频率控制储量。  相似文献   

13.
开发风电机组的控制潜力向电力系统提供频率控制成为对风力发电的新要求。传统的针对超速风电机组的频率控制方法没有考虑对风电机组旋转动能的有效利用,缺乏根据风电机组运行状态对频率控制器参数进行整定的方法,尚未充分发挥风电机组的频率控制能力。因此,提出了超速风电机组的改进频率控制方法,将超速风电机组的转子旋转动能用于降低系统频率变化率,超速减载功率用于系统一次调频,提出了考虑风电机组运行状态的频率控制器参数整定方法。仿真结果表明,提出的控制方法能够充分利用风电机组的旋转动能和减载功率提升系统频率控制效果,同时防止风电机组过度响应,有利于风电机组安全运行。  相似文献   

14.
风力发电的调频技术研究综述   总被引:18,自引:0,他引:18  
随着风力发电的规模化开发利用,风电作为未来电网中的重要电源,越来越被认为应该具备类似于传统电源的有功控制和频率调节等辅助服务能力。介绍了一些风力发电发展较快国家或地区对风力发电参与调频或提供有功备用的导则或规定,分析了变速风电机组转子惯性控制、超速控制、变桨控制、组合控制,以及储能与风电机组结合参与系统频率响应或调节的技术特点与研究发展态势,并给出了今后需要重点关注或研究的问题。  相似文献   

15.
风力发电作为一种可再生能源发电在电网中的渗透率逐年升高,其具有的随机性、波动性和间歇性给电力系统的安全稳定运行带来了不利影响。与此同时,储能技术在近年来得到大力发展,其快速性和大范围吞吐性可以弥补风电机组单独运行时所带来的不利影响。首先对风电和储能系统的输出特性进行分析。其次针对风电并网发电在遇到频率波动时不具备惯性的问题,提出了应用储能补偿系统惯量,利用频率变化率作为反馈输入并调节惯量常数K,使风储联合系统作为一个整体对外提供有功功率参与电网调频,再利用Matlab/Simulink仿真验证了本文所提出控制策略补偿系统惯量的有效性。最后仿真对比风电机组单独参与电网调频与风储联合系统调频控制策略,得出风储联合系统参与电网调频的优越性。  相似文献   

16.
双馈风电机组参与系统辅助频率控制的仿真   总被引:1,自引:0,他引:1  
通过建立Matlab双馈机组风力发电仿真系统、增加频率控制环节,模拟系统频率变化时双馈风力发电机短时释放或吸收转子动能的情况,研究其辅助系统频率控制的作用。仿真结果显示,含双馈风力发电机组的风电场也能像常规机组一样参与系统辅助频率控制。  相似文献   

17.
变速恒频双馈风电机组频率控制策略   总被引:21,自引:3,他引:18  
传统的变速双馈风电机组解耦控制策略对于系统频率支撑作用微乎其微。文中在分析变速双馈风电机组参与系统频率控制特性的基础上,在传统变速双馈风电机组解耦控制中附加风电机组频率控制单元。控制系统包含频率控制、转速延时恢复、转速保护系统和与常规机组配合等4个功能模块。仿真结果表明,该控制策略不仅对暂态频率偏差具有快速的响应能力,而且能够使转子转速以更快的速度恢复到最佳运行状态,证明了基于变速双馈机组的风电场能够在一定程度上参与系统的频率控制。  相似文献   

18.
飞轮辅助的风力发电系统功率和频率综合控制   总被引:14,自引:2,他引:12  
参与电网频率控制是并网运行发电机组应有的功能。该文在分析风力发电对电力系统运行影响的基础上,提出了一种用飞轮辅助风力发电的方案,研究了风力发电-飞轮系统功率和频率综合控制方法,建立了相应的Simulink仿真模型,用实际风速对飞轮平稳风力发电机输出功率波动、参与电网频率控制进行了仿真。结果表明,在飞轮辅助下,风力发电-飞轮系统可以按要求输出平稳的功率,并且可以像传统发电机组一样参与电网频率控制。  相似文献   

19.
目前大量并网的风电机组按最大功率跟踪曲线运行,其功率不能响应电网频率的变化,不具备一次调频功能,这将严重影响电网的安全稳定运行。在分析风电场运行状况基础上,提出在现有风电场机组中加入虚拟惯性控制策略,以提高风电机组输出功率快速响应电网频率变化的能力;通过在风电场集中引入下垂控制策略,获得风电场一次调频总功率,再经过风电场能量管理平台分发给各台风电机组,实现风电场一次调频功能。现场试验结果表明,风电场机组能够像常规发电机组一样进行电网一次调频,其一次调频响应有功功率的速度优于水电机组指标规定的要求。  相似文献   

20.
利用转子动能的风机辅助频率控制最优策略   总被引:4,自引:0,他引:4  
风机增加辅助频率控制模块是解决新能源取代同步机导致的电力系统频率安全问题的一种方案,其中利用转子动能的调频模式可以使风机运行在最大功率点,经济性比功率备用模式更好。已有研究主要让风机通过虚拟惯量和频率下垂控制模拟同步机,却未充分利用风机控制灵活、可塑性强的优点,且未考虑风机转子动能限制及系统频率二次跌落。论文跳出虚拟惯量加频率下垂控制的传统框架,提出利用转子动能的风机辅助频率控制最优策略。首先将风机输出功率曲线作为决策变量,通过优化得到最优功率曲线,然后设计对应的辅助频率控制策略,实现最优输出功率曲线。仿真结果验证所提策略的效果,并说明风机辅助频率控制不应局限于模拟同步机,而是有更优的策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号