首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 706 毫秒
1.
采用传统氧化物陶瓷工艺制备MnZn铁氧体材料。为获得高性能的MnZn软磁铁氧体材料,研究工艺条件及CaO、Nb2O5、Co2O3、TiO2等掺杂对MnZn软磁铁氧体材料增量磁导率的影响。结果表明,适量的CaO掺杂可使铁氧体晶粒尺寸细化,改善铁氧体晶粒的均匀性;适量的Co2O3添加可以改善材料增量磁导率的温度特性;添加适量Nb2O5与TiO2有利于提高起始磁导率、电阻率,降低磁损耗,从而改善材料的直流叠加特性。通过优化掺杂工艺,制备出了高磁导率、宽温、高直流叠加MnZn软磁铁氧体材料。  相似文献   

2.
Nb2O5掺杂在高磁导率、低失真、低损耗MnZn铁氧体中的作用   总被引:1,自引:0,他引:1  
用普通氧化物法研制高磁导率低失真TH10i软磁铁氧体材料.通过不同Nb2O5掺杂量的设计试验、数据分析,研究了Nb2O5掺杂量对材料性能的影响.实验结果表明,适量的Nb2O5添加可以降低高磁导率MnZn铁氧体的磁滞常数和比损耗因数,提高材料的综合性能.  相似文献   

3.
在钟罩式气氛烧结炉中烧结高导MnZn铁氧体材料.研究发现,掺入适量的CaCO3和Bi2O3能改善材料的磁性能.烧结过程中烧结温度的增高可以促进晶粒长大,有利于提高起始磁导率;烧结气氛对离子电价和晶相形成有着决定性影响,选择合适烧结工艺是制备优质MnZn铁氧体的关键.  相似文献   

4.
Nb2O5掺杂对高频MnZn功率铁氧体微结构和性能的影响.   总被引:17,自引:5,他引:12  
采用氧化物陶瓷工艺制备了高频MnZn功率铁氧体.从分析材料微观结构入手,研究了添加Nb2O5对MnZn铁氧体起始磁导率μi、电阻率ρ及高频功率损耗Pcv的影响,确定出适宜的Nb2O5添加量为(150~250)×10-6.  相似文献   

5.
用普通陶瓷工艺制备了高磁导率MnZn铁氧体材料,研究了MoO3和CaCO3掺杂对材料的磁特性的影响。发现添加MoO3能够促进晶粒长大,从而提高材料的磁导率,但添加过量会增大铁氧体材料的气孔率。添加CaCO3使得晶界明显,晶粒均匀,起始磁导率增高,同时形成了高电阻的晶界层,降低了材料的比损耗因子。  相似文献   

6.
采用氧化物陶瓷工艺制备低温烧结MnZn功率铁氧体材料,研究V2O5掺杂对材料显微结构、烧结温度、烧结密度、收缩率、磁导率、饱和磁感应强度及功耗特性的影响.结果表明,随V2O5掺杂量的增加,样品平均晶粒尺寸增大,材料烧结温度降低,收缩率增大,烧结密度、磁导率及饱和磁感应强度先增高后降低,功耗先降低后增高.配方采用MnCO3:38.85 mol%、ZnO:10.18 mol%、Fe2O3:50.97 mol%,基础添加Bi2O3:1 wt%并掺杂V2O5:0.5~0.7 wt%,可获得具有高饱和磁感应强度(Bs>380 mT,1.2 kA/m下测量)、低功耗(功率损耗Pcv<500 kW/m3(20℃,1 MHz,30 mT)、高磁导率(1000左右)的性能,显微结构致密,其烧结温度<950℃.  相似文献   

7.
高磁导率、高直流叠加MnZn软磁铁氧体材料研究   总被引:2,自引:0,他引:2  
用普通陶瓷工艺制备MnZn铁氧体材料,研究了主配方及掺杂对材料直流叠加特性的影响.结果表明,主配方中适当过量的Fe2O3可以增大材料的饱和磁通密度,推迟磁芯的饱和磁化,从而改善材料的直流叠加特性;添加适量的Co2O3等杂质可与铁氧体负的磁晶各向异性常数K1进行补偿,从而改善材料磁导率的温度特性.  相似文献   

8.
高Bs高μi MnZn铁氧体材料的制备及性能   总被引:1,自引:0,他引:1  
采用合适的配方和复合掺杂制备了一种高饱和磁感应强度和高起始磁导率的MnZn铁氧体材料,这种材料具有较高的居里温度TC和较低的功率损耗PL.研究了添加剂对磁性能的影响,结果表明,采用合适的烧结工艺,添加适量的Bi2O3、TiO2、V2O5、CoO及Nb2O5有利于材料i、Bs和TC的提高及材料PL的降低.  相似文献   

9.
烧结温度对掺Mn的NiZn铁氧体磁性能的影响   总被引:1,自引:0,他引:1  
研究了烧结温度对掺杂6wt% MnCO3的Ni0.24Zn0.6Fe1.98O4铁氧体磁性能的影响.实验发现,在1220℃烧结时,此配方NiZn铁氧体能达到较好性能,其起始磁导率及品质因数均高,介电常数高频衰减减小,且材料的微观结构较好,晶粒平均粒径较大,晶粒中气孔少.  相似文献   

10.
采用固相反应法制备了Dy2O3掺杂MnZn铁氧体,分别采用X射线衍射仪(XRD)、扫描电镜(SEM)、振动样品磁强计(VSM)、LCR表以及B-H仪等对样品的结构和电磁性能进行表征.结果表明,在Dy2O3掺杂量为0~0.1 wt%,样品均为单相立方尖晶石结构;当Dy2O3掺杂量为0.05 wt%,样品呈现出较大的晶粒尺寸和密度,此时,具有最大的饱和磁化强度95.8 A·m2/kg和最小的矫顽力55.9 A/m;起始磁导率提高至845,相对于未掺杂样品增幅为32%,在1 MHz、50 mT、25℃的测试条件下,损耗降低幅度为20%;此外,利用等效电路模型对不同Dy2O3掺杂量样品进行了晶粒电阻和晶界电阻分离,并初步分析了Dy元素影响MnZn铁氧体涡流损耗的机制.  相似文献   

11.
采用氧化物陶瓷工艺制备MnZn铁氧体材料,研究了烧结过程氧分压及热处理氧分压对于其电磁性能的影响。实验表明,烧结过程中的氧分压P(O_2)越高,材料中的Fe2+含量越低,烧结体晶粒越大;氧分压的最佳范围在4~7%附近,过高或过低均会降低材料的磁性能。对于因氧分压偏离最佳范围导致磁性能低下的MnZn烧结体,可以通过后续的热处理工艺调节Fe2+含量以恢复其磁性能。根据这些结果,综合烧结工艺和热处理工艺的优势,采用21%的氧分压烧结获得较大的晶粒之后再在0.1%的氧分压气氛中热处理的方法调节铁氧体的Fe2+含量,获得了25℃时μi=10600,Bs=427 mT,μi(200 kHz)/μi(10 kHz)=98%,综合性能良好的高磁导率MnZn铁氧体磁芯。  相似文献   

12.
采用氧化物陶瓷工艺制备Mn Zn铁氧体,研究了Ba O掺杂量对高频Mn Zn功率铁氧体微观结构和磁性能的影响。结果表明,少量的Ba O掺杂可以使铁氧体烧结样品的晶粒尺寸增大,密度和饱和磁感应强度提高,功耗降低,而过量加入后会出现过烧现象,功耗增加,饱和磁通密度和密度有所下降。烧结样品的起始磁导率随Ba O掺杂量的增加单调下降。在1260℃烧结温度下,当Ba O掺杂量为0.025wt%时,样品具有最低功耗值,且其他磁性能也较好。另外,与不掺杂Ba O的最佳烧结条件下铁氧体样品相比,1260℃烧结掺杂量为0.025wt%的材料起始磁导率降低,但功耗的温度特性更优。  相似文献   

13.
通过对混合Zn或者Dy_2O_3粉末的快淬Nd10.15Pr1.86Fe80.41Al1.67B5.91粉末进行放电等离子烧结(SPS),制备出各向同性Nd Fe B永磁材料,分别研究了两种粉末的添加对磁体组织形貌和性能的影响。结果表明,Zn可以起到细化磁体内部晶粒尺寸的作用,并且会和主相反应生成Nd Zn及Nd Zn5相;Dy_2O_3不利于磁体的致密化,其磁性能的提高被认为是粉末对于磁体内部晶粒的细化作用以及(Nd,Dy)2Fe14B相形成共同作用的结果。对于添加Zn粉末磁体,当Zn添加量为0.6wt%时,磁体获得最佳磁性能;对于添加Dy_2O_3粉末磁体,当Dy_2O_3添加量为2.0wt%时,磁体获得最佳磁性能。  相似文献   

14.
Co2O3或/和V2O5掺杂对NiZn铁氧体磁性能的影响   总被引:4,自引:1,他引:4  
一定量的V2O5掺杂有利于NiZn铁氧体烧结温度的降低,且在一定范围内起始磁导率升高;而Co2O3掺于Nizn铁氧体,起始磁导率降低,但损耗特性可得到改善。我们采用Co2O3-V2O5复合掺杂,发现选择适当的配比,在起始磁导率没有大的下降的情况下,烧结温度和损耗特性等其他磁特性可得到较好的改善。  相似文献   

15.
CaCO3-SiO2添加对MnZn铁氧体物相及性能的影响   总被引:1,自引:0,他引:1  
采用氧化物陶瓷工艺制备了Mn0.7Zn0.24Fe2.06O4铁氧体.用X射线衍射仪、扫描电镜、B-H分析仪分别表征了CaCO3-SiO2添加对MnZn铁氧体物相、微结构和磁性能的影响.结果表明,添加于MnZn铁氧体的CaCO3-SiO2主要富集于晶界,且生成另相Ca2ZnSi2O7.随着CaCO3-SiO2含量的增加...  相似文献   

16.
按组成Ni_(0.28)Cu_(0.27)Zn_(0.45)Fe_(1.91)O_(3.82)制备了NiCuZn铁氧体,在预烧料中添加0.5wt%的Co_2O_3和x的Bi_2O_3(x=0.05,0.1,0.3,0.5,0.7,1.0,1.5,3.0 wt%),在900℃烧结后测试样品微观形貌和磁特性。结果表明,非磁性相Bi_2O_3的引入,一方面导致NiCuZn铁氧体晶粒的生长机制发生变化,从而影响材料磁特性,另外作为非磁性相,其加入量的不同也对磁特性带来不同的影响。少量(x=0.05 wt%~0.3 wt%)Bi_2O_3添加,晶粒平均尺寸为1.4~1.6μm,在获得致密的单畴晶粒结构的同时带来了材料Bs和磁导率μ的提高;当添加量增大时(x=0.5 wt%~3.0wt%),由于非磁性相的增加,磁导率μ与Bs均降低。最佳磁特性m¢值在Bi_2O_3添加为0.1wt%时获得,为196,m2值为3。  相似文献   

17.
分别采用过铁、正铁和缺铁配方通过固相反应法制备MgCuZn铁氧体,分析了Fe3+对铁氧体的磁性能和烧结特性的影响。微量缺铁有助于促进烧结并改善磁性能,过铁情况下,饱和磁化强度随x值增大迅速下降,在x=0.06处下降至38.84 A·m2/kg,相应的磁导率下降,截止频率向高频移动。并研究了微量V2O5掺杂对改善磁性能的作用,在掺杂量为0.4wt%处获得虚部损耗的有效提升(截止频率处提升近30%)。在此基础上探讨了MgCuZn铁氧体用作抗EMI磁珠的可行性,其低廉的价格相较于传统的Ni Zn/Ni Cu Zn铁氧体具有明显的优势。  相似文献   

18.
采用固相反应法制备了Mg_(1-x)Cu_xFe_2O_4(x=0,0.4,0.6和0.8)系多晶铁氧体,分别采用X射线衍射(XRD)、扫描电镜(SEM)和振动样品磁强计(VSM)对样品的结构和静态磁性能进行了表征,并测试了磁环在10k Hz~1MHz范围的磁导率、品质因数以及功率损耗。结果表明,Cu含量x=0~0.6时,样品均为单相立方尖晶石结构,Cu含量进一步增加至x=0.8时呈现大量的四方相另相;晶粒尺寸和密度均随x值增加逐渐增大,而电阻率则呈减小趋势;饱和磁化强度由20.7 A m2/kg逐渐增大到30.4 A m2/kg,矫顽力先减小后增大,在x=0.6时具有最小值445.7 A/m。利用适量的Cu2+取代Mg2+可以提高Mg1-xCuxFe2O4铁氧体的磁导率并降低其品质因数,样品的功耗相应地明显增大;在交变磁场频率为370k Hz时,磁通密度低于20 m T范围内,Mg_(0.4)Cu_(0.6)Fe_2O_4具有相对较高的功耗。  相似文献   

19.
在前期实验的基础上并根据实际需要,选用Ni0.25Cu0.4Co0.15Zn0.2Fe2O4为主配方,采用普通氧化物陶瓷工艺制备NiCuZn铁氧体材料,通过添加V2O5助熔剂来改善材料的显微结构。主要研究了助剂含量对材料致密化程度、起始磁导率、截止频率、比损耗、温度稳定性等的影响。最终制备出可以用于射频领域的宽频带铁氧体材料,性能为:起始磁导率为7.4,截止频率700MHz左右,在-60~120℃磁导率的比温度系数小于4.5×10-4/℃,比损耗系数在100MHz以下小于1×10-2。  相似文献   

20.
采用传统氧化物陶瓷工艺制备Mn_(0.777)Zn_(0.133)Fe_(2.09)O_4铁氧体材料,研究了预烧温度对材料微结构和磁性能的影响。结果表明,随着预烧温度的升高,材料的密度(d)、起始磁导率(μi)和饱和磁感应强度(Bs)均先升高后降低,材料的损耗(Pcv)先降低后升高。当预烧温度为910℃时,材料具有最大的烧结密度、饱和磁感应强度、起始磁导率以及最小的磁芯损耗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号